A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction
As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and rec...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-01, Vol.24 (1), p.624-634 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 1 |
container_start_page | 624 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Ammaiappan, Sathesh Liang, Guanghui Tan, Chao Dong, Feng |
description | As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and recurrent neural network (RNN) is proposed to solve the ERT inverse problem. In the proposed hybrid deep-learning model, the priority-based adaptive firefly algorithm (PAFA) optimizes the neuron structure by feature engineering and adaptively estimates the local optimum to accelerate convergence. The feature selection technique controls randomness through efficient local search and finding the optimal value fit. The input and output relation is enforced by local recurrent cells in the hybrid model feedback with a bidirectional long-short-term memory (BiLSTM) network. The proposed model extracts the latent features from the prior cells during the training period of the network architecture. Simulation and experimental tests are carried out, and the quantitative analysis shows that the proposed hybrid deep-learning model has better imaging accuracy than the traditional image reconstruction methods. |
doi_str_mv | 10.1109/JSEN.2023.3335321 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10336737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10336737</ieee_id><sourcerecordid>2909283751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c539751cea3453e36b0d96f56397eb9abdf3f319edc4b438446bcebcb147553</originalsourceid><addsrcrecordid>eNpNUE1PwkAQbYwmIvoDTDxs4rm429ntx7EQUAyKEQ7emu12iktKW3cLCf56t4GDp_l6783M87x7RkeM0eTpdTV9HwU0gBEACAjYhTdgQsQ-i3h82edAfQ7R17V3Y-2WUpZEIhp4bUo-jG6M7o7-WFosSFrIttMHJDNtsKyOZOnKnf51o0lTH_yxXqzWbyStNj3re0fKxpBphaozWsmKfKLVtpO1QjLfyQ26hmpq25m96nRT33pXpaws3p3j0FvNpuvJi79YPs8n6cJXAQ87XwlwBzKFErgAhDCnRRKWInRtzBOZFyWUwBIsFM85xJyHucJc5YxHQsDQezyptqb52aPtsm2zN7VbmAUJTYIYnLhDsRNKmcZa923WGr2T5pgxmvW2Zr2tWW9rdrbVcR5OHI2I__AAYQQR_AHd6XT5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909283751</pqid></control><display><type>article</type><title>A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Ammaiappan, Sathesh ; Liang, Guanghui ; Tan, Chao ; Dong, Feng</creator><creatorcontrib>Ammaiappan, Sathesh ; Liang, Guanghui ; Tan, Chao ; Dong, Feng</creatorcontrib><description>As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and recurrent neural network (RNN) is proposed to solve the ERT inverse problem. In the proposed hybrid deep-learning model, the priority-based adaptive firefly algorithm (PAFA) optimizes the neuron structure by feature engineering and adaptively estimates the local optimum to accelerate convergence. The feature selection technique controls randomness through efficient local search and finding the optimal value fit. The input and output relation is enforced by local recurrent cells in the hybrid model feedback with a bidirectional long-short-term memory (BiLSTM) network. The proposed model extracts the latent features from the prior cells during the training period of the network architecture. Simulation and experimental tests are carried out, and the quantitative analysis shows that the proposed hybrid deep-learning model has better imaging accuracy than the traditional image reconstruction methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3335321</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Artificial neural networks ; Bidirectional long-short term memory (BiLSTM) ; Convolution ; convolutional neural network (CNN) ; Deep learning ; Electrical resistance ; electrical resistance tomography (ERT) ; Feature extraction ; firefly algorithm (FA) ; Heuristic methods ; Image reconstruction ; Inverse problems ; Machine learning ; Mathematical models ; Neural networks ; Optimization ; recurrent neural network (RNN) ; Recurrent neural networks ; Training</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (1), p.624-634</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c539751cea3453e36b0d96f56397eb9abdf3f319edc4b438446bcebcb147553</cites><orcidid>0000-0001-5146-4807 ; 0000-0002-6064-6730 ; 0000-0002-6480-9111 ; 0000-0002-8478-8928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10336737$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10336737$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ammaiappan, Sathesh</creatorcontrib><creatorcontrib>Liang, Guanghui</creatorcontrib><creatorcontrib>Tan, Chao</creatorcontrib><creatorcontrib>Dong, Feng</creatorcontrib><title>A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and recurrent neural network (RNN) is proposed to solve the ERT inverse problem. In the proposed hybrid deep-learning model, the priority-based adaptive firefly algorithm (PAFA) optimizes the neuron structure by feature engineering and adaptively estimates the local optimum to accelerate convergence. The feature selection technique controls randomness through efficient local search and finding the optimal value fit. The input and output relation is enforced by local recurrent cells in the hybrid model feedback with a bidirectional long-short-term memory (BiLSTM) network. The proposed model extracts the latent features from the prior cells during the training period of the network architecture. Simulation and experimental tests are carried out, and the quantitative analysis shows that the proposed hybrid deep-learning model has better imaging accuracy than the traditional image reconstruction methods.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Artificial neural networks</subject><subject>Bidirectional long-short term memory (BiLSTM)</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Electrical resistance</subject><subject>electrical resistance tomography (ERT)</subject><subject>Feature extraction</subject><subject>firefly algorithm (FA)</subject><subject>Heuristic methods</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>Training</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PwkAQbYwmIvoDTDxs4rm429ntx7EQUAyKEQ7emu12iktKW3cLCf56t4GDp_l6783M87x7RkeM0eTpdTV9HwU0gBEACAjYhTdgQsQ-i3h82edAfQ7R17V3Y-2WUpZEIhp4bUo-jG6M7o7-WFosSFrIttMHJDNtsKyOZOnKnf51o0lTH_yxXqzWbyStNj3re0fKxpBphaozWsmKfKLVtpO1QjLfyQ26hmpq25m96nRT33pXpaws3p3j0FvNpuvJi79YPs8n6cJXAQ87XwlwBzKFErgAhDCnRRKWInRtzBOZFyWUwBIsFM85xJyHucJc5YxHQsDQezyptqb52aPtsm2zN7VbmAUJTYIYnLhDsRNKmcZa923WGr2T5pgxmvW2Zr2tWW9rdrbVcR5OHI2I__AAYQQR_AHd6XT5</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Ammaiappan, Sathesh</creator><creator>Liang, Guanghui</creator><creator>Tan, Chao</creator><creator>Dong, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5146-4807</orcidid><orcidid>https://orcid.org/0000-0002-6064-6730</orcidid><orcidid>https://orcid.org/0000-0002-6480-9111</orcidid><orcidid>https://orcid.org/0000-0002-8478-8928</orcidid></search><sort><creationdate>20240101</creationdate><title>A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction</title><author>Ammaiappan, Sathesh ; Liang, Guanghui ; Tan, Chao ; Dong, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c539751cea3453e36b0d96f56397eb9abdf3f319edc4b438446bcebcb147553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Artificial neural networks</topic><topic>Bidirectional long-short term memory (BiLSTM)</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Electrical resistance</topic><topic>electrical resistance tomography (ERT)</topic><topic>Feature extraction</topic><topic>firefly algorithm (FA)</topic><topic>Heuristic methods</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammaiappan, Sathesh</creatorcontrib><creatorcontrib>Liang, Guanghui</creatorcontrib><creatorcontrib>Tan, Chao</creatorcontrib><creatorcontrib>Dong, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ammaiappan, Sathesh</au><au>Liang, Guanghui</au><au>Tan, Chao</au><au>Dong, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>624</spage><epage>634</epage><pages>624-634</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and recurrent neural network (RNN) is proposed to solve the ERT inverse problem. In the proposed hybrid deep-learning model, the priority-based adaptive firefly algorithm (PAFA) optimizes the neuron structure by feature engineering and adaptively estimates the local optimum to accelerate convergence. The feature selection technique controls randomness through efficient local search and finding the optimal value fit. The input and output relation is enforced by local recurrent cells in the hybrid model feedback with a bidirectional long-short-term memory (BiLSTM) network. The proposed model extracts the latent features from the prior cells during the training period of the network architecture. Simulation and experimental tests are carried out, and the quantitative analysis shows that the proposed hybrid deep-learning model has better imaging accuracy than the traditional image reconstruction methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3335321</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5146-4807</orcidid><orcidid>https://orcid.org/0000-0002-6064-6730</orcidid><orcidid>https://orcid.org/0000-0002-6480-9111</orcidid><orcidid>https://orcid.org/0000-0002-8478-8928</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-01, Vol.24 (1), p.624-634 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10336737 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive algorithms Artificial neural networks Bidirectional long-short term memory (BiLSTM) Convolution convolutional neural network (CNN) Deep learning Electrical resistance electrical resistance tomography (ERT) Feature extraction firefly algorithm (FA) Heuristic methods Image reconstruction Inverse problems Machine learning Mathematical models Neural networks Optimization recurrent neural network (RNN) Recurrent neural networks Training |
title | A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Priority-Based%20Adaptive%20Firefly%20Optimized%20Conv-BiLSTM%20Algorithm%20for%20Electrical%20Resistance%20Image%20Reconstruction&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ammaiappan,%20Sathesh&rft.date=2024-01-01&rft.volume=24&rft.issue=1&rft.spage=624&rft.epage=634&rft.pages=624-634&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3335321&rft_dat=%3Cproquest_RIE%3E2909283751%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909283751&rft_id=info:pmid/&rft_ieee_id=10336737&rfr_iscdi=true |