A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction

As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-01, Vol.24 (1), p.624-634
Hauptverfasser: Ammaiappan, Sathesh, Liang, Guanghui, Tan, Chao, Dong, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 1
container_start_page 624
container_title IEEE sensors journal
container_volume 24
creator Ammaiappan, Sathesh
Liang, Guanghui
Tan, Chao
Dong, Feng
description As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and recurrent neural network (RNN) is proposed to solve the ERT inverse problem. In the proposed hybrid deep-learning model, the priority-based adaptive firefly algorithm (PAFA) optimizes the neuron structure by feature engineering and adaptively estimates the local optimum to accelerate convergence. The feature selection technique controls randomness through efficient local search and finding the optimal value fit. The input and output relation is enforced by local recurrent cells in the hybrid model feedback with a bidirectional long-short-term memory (BiLSTM) network. The proposed model extracts the latent features from the prior cells during the training period of the network architecture. Simulation and experimental tests are carried out, and the quantitative analysis shows that the proposed hybrid deep-learning model has better imaging accuracy than the traditional image reconstruction methods.
doi_str_mv 10.1109/JSEN.2023.3335321
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10336737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10336737</ieee_id><sourcerecordid>2909283751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c539751cea3453e36b0d96f56397eb9abdf3f319edc4b438446bcebcb147553</originalsourceid><addsrcrecordid>eNpNUE1PwkAQbYwmIvoDTDxs4rm429ntx7EQUAyKEQ7emu12iktKW3cLCf56t4GDp_l6783M87x7RkeM0eTpdTV9HwU0gBEACAjYhTdgQsQ-i3h82edAfQ7R17V3Y-2WUpZEIhp4bUo-jG6M7o7-WFosSFrIttMHJDNtsKyOZOnKnf51o0lTH_yxXqzWbyStNj3re0fKxpBphaozWsmKfKLVtpO1QjLfyQ26hmpq25m96nRT33pXpaws3p3j0FvNpuvJi79YPs8n6cJXAQ87XwlwBzKFErgAhDCnRRKWInRtzBOZFyWUwBIsFM85xJyHucJc5YxHQsDQezyptqb52aPtsm2zN7VbmAUJTYIYnLhDsRNKmcZa923WGr2T5pgxmvW2Zr2tWW9rdrbVcR5OHI2I__AAYQQR_AHd6XT5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909283751</pqid></control><display><type>article</type><title>A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Ammaiappan, Sathesh ; Liang, Guanghui ; Tan, Chao ; Dong, Feng</creator><creatorcontrib>Ammaiappan, Sathesh ; Liang, Guanghui ; Tan, Chao ; Dong, Feng</creatorcontrib><description>As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and recurrent neural network (RNN) is proposed to solve the ERT inverse problem. In the proposed hybrid deep-learning model, the priority-based adaptive firefly algorithm (PAFA) optimizes the neuron structure by feature engineering and adaptively estimates the local optimum to accelerate convergence. The feature selection technique controls randomness through efficient local search and finding the optimal value fit. The input and output relation is enforced by local recurrent cells in the hybrid model feedback with a bidirectional long-short-term memory (BiLSTM) network. The proposed model extracts the latent features from the prior cells during the training period of the network architecture. Simulation and experimental tests are carried out, and the quantitative analysis shows that the proposed hybrid deep-learning model has better imaging accuracy than the traditional image reconstruction methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3335321</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Artificial neural networks ; Bidirectional long-short term memory (BiLSTM) ; Convolution ; convolutional neural network (CNN) ; Deep learning ; Electrical resistance ; electrical resistance tomography (ERT) ; Feature extraction ; firefly algorithm (FA) ; Heuristic methods ; Image reconstruction ; Inverse problems ; Machine learning ; Mathematical models ; Neural networks ; Optimization ; recurrent neural network (RNN) ; Recurrent neural networks ; Training</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (1), p.624-634</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c539751cea3453e36b0d96f56397eb9abdf3f319edc4b438446bcebcb147553</cites><orcidid>0000-0001-5146-4807 ; 0000-0002-6064-6730 ; 0000-0002-6480-9111 ; 0000-0002-8478-8928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10336737$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10336737$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ammaiappan, Sathesh</creatorcontrib><creatorcontrib>Liang, Guanghui</creatorcontrib><creatorcontrib>Tan, Chao</creatorcontrib><creatorcontrib>Dong, Feng</creatorcontrib><title>A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and recurrent neural network (RNN) is proposed to solve the ERT inverse problem. In the proposed hybrid deep-learning model, the priority-based adaptive firefly algorithm (PAFA) optimizes the neuron structure by feature engineering and adaptively estimates the local optimum to accelerate convergence. The feature selection technique controls randomness through efficient local search and finding the optimal value fit. The input and output relation is enforced by local recurrent cells in the hybrid model feedback with a bidirectional long-short-term memory (BiLSTM) network. The proposed model extracts the latent features from the prior cells during the training period of the network architecture. Simulation and experimental tests are carried out, and the quantitative analysis shows that the proposed hybrid deep-learning model has better imaging accuracy than the traditional image reconstruction methods.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Artificial neural networks</subject><subject>Bidirectional long-short term memory (BiLSTM)</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Electrical resistance</subject><subject>electrical resistance tomography (ERT)</subject><subject>Feature extraction</subject><subject>firefly algorithm (FA)</subject><subject>Heuristic methods</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>Training</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PwkAQbYwmIvoDTDxs4rm429ntx7EQUAyKEQ7emu12iktKW3cLCf56t4GDp_l6783M87x7RkeM0eTpdTV9HwU0gBEACAjYhTdgQsQ-i3h82edAfQ7R17V3Y-2WUpZEIhp4bUo-jG6M7o7-WFosSFrIttMHJDNtsKyOZOnKnf51o0lTH_yxXqzWbyStNj3re0fKxpBphaozWsmKfKLVtpO1QjLfyQ26hmpq25m96nRT33pXpaws3p3j0FvNpuvJi79YPs8n6cJXAQ87XwlwBzKFErgAhDCnRRKWInRtzBOZFyWUwBIsFM85xJyHucJc5YxHQsDQezyptqb52aPtsm2zN7VbmAUJTYIYnLhDsRNKmcZa923WGr2T5pgxmvW2Zr2tWW9rdrbVcR5OHI2I__AAYQQR_AHd6XT5</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Ammaiappan, Sathesh</creator><creator>Liang, Guanghui</creator><creator>Tan, Chao</creator><creator>Dong, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5146-4807</orcidid><orcidid>https://orcid.org/0000-0002-6064-6730</orcidid><orcidid>https://orcid.org/0000-0002-6480-9111</orcidid><orcidid>https://orcid.org/0000-0002-8478-8928</orcidid></search><sort><creationdate>20240101</creationdate><title>A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction</title><author>Ammaiappan, Sathesh ; Liang, Guanghui ; Tan, Chao ; Dong, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c539751cea3453e36b0d96f56397eb9abdf3f319edc4b438446bcebcb147553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Artificial neural networks</topic><topic>Bidirectional long-short term memory (BiLSTM)</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Electrical resistance</topic><topic>electrical resistance tomography (ERT)</topic><topic>Feature extraction</topic><topic>firefly algorithm (FA)</topic><topic>Heuristic methods</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammaiappan, Sathesh</creatorcontrib><creatorcontrib>Liang, Guanghui</creatorcontrib><creatorcontrib>Tan, Chao</creatorcontrib><creatorcontrib>Dong, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ammaiappan, Sathesh</au><au>Liang, Guanghui</au><au>Tan, Chao</au><au>Dong, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>624</spage><epage>634</epage><pages>624-634</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>As a high-speed, noninvasive process measurement technology, electrical resistance tomography (ERT) is well suited for visualization of media distribution in industrial and biomedical fields. An innovative optimal hybrid deep-learning strategy utilizing a 1-D convolution neural network (CNN) and recurrent neural network (RNN) is proposed to solve the ERT inverse problem. In the proposed hybrid deep-learning model, the priority-based adaptive firefly algorithm (PAFA) optimizes the neuron structure by feature engineering and adaptively estimates the local optimum to accelerate convergence. The feature selection technique controls randomness through efficient local search and finding the optimal value fit. The input and output relation is enforced by local recurrent cells in the hybrid model feedback with a bidirectional long-short-term memory (BiLSTM) network. The proposed model extracts the latent features from the prior cells during the training period of the network architecture. Simulation and experimental tests are carried out, and the quantitative analysis shows that the proposed hybrid deep-learning model has better imaging accuracy than the traditional image reconstruction methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3335321</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5146-4807</orcidid><orcidid>https://orcid.org/0000-0002-6064-6730</orcidid><orcidid>https://orcid.org/0000-0002-6480-9111</orcidid><orcidid>https://orcid.org/0000-0002-8478-8928</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-01, Vol.24 (1), p.624-634
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10336737
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive algorithms
Artificial neural networks
Bidirectional long-short term memory (BiLSTM)
Convolution
convolutional neural network (CNN)
Deep learning
Electrical resistance
electrical resistance tomography (ERT)
Feature extraction
firefly algorithm (FA)
Heuristic methods
Image reconstruction
Inverse problems
Machine learning
Mathematical models
Neural networks
Optimization
recurrent neural network (RNN)
Recurrent neural networks
Training
title A Priority-Based Adaptive Firefly Optimized Conv-BiLSTM Algorithm for Electrical Resistance Image Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Priority-Based%20Adaptive%20Firefly%20Optimized%20Conv-BiLSTM%20Algorithm%20for%20Electrical%20Resistance%20Image%20Reconstruction&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ammaiappan,%20Sathesh&rft.date=2024-01-01&rft.volume=24&rft.issue=1&rft.spage=624&rft.epage=634&rft.pages=624-634&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3335321&rft_dat=%3Cproquest_RIE%3E2909283751%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909283751&rft_id=info:pmid/&rft_ieee_id=10336737&rfr_iscdi=true