On ISS With Respect to Average Value of Disturbances: A Time-Delay Approach

For input-affine nonlinear dynamical systems, an input-to-state stability analysis with respect to (weighted) average values of exogenous perturbations is proposed. The time-delay method is used to represent the system in a suitable form for investigation: A kind of neutral-type differential equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-05, Vol.69 (5), p.3434-3440
Hauptverfasser: Efimov, Denis, Fridman, Emilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3440
container_issue 5
container_start_page 3434
container_title IEEE transactions on automatic control
container_volume 69
creator Efimov, Denis
Fridman, Emilia
description For input-affine nonlinear dynamical systems, an input-to-state stability analysis with respect to (weighted) average values of exogenous perturbations is proposed. The time-delay method is used to represent the system in a suitable form for investigation: A kind of neutral-type differential equation. The introduced approach allows the asymptotic gains with respect to zero-mean periodic signals to be evaluated for nonlinear systems (an analogue of Bode magnitude plot), as well as for integral input-to-state stable systems with periodic inputs. The results are illustrated on the class of homogeneous systems.
doi_str_mv 10.1109/TAC.2023.3337696
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10333987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10333987</ieee_id><sourcerecordid>3046910557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-e2a8a3eca908daef3866baac2bd8030f4b764b210d2436561dafce6d7ca9da2b3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7dj2Sz8RZaP4qFgq16XCabiU1pm7ibCP33bmkPnoZhnndeeAi55WzEOcselvl4JJiQIyllqjJ1RgY8SXQkEiHPyYAxrqNMaHVJrrxfh1XFMR-Qt_mOThcL-lV3K_qOvkXb0a6h-S86-Eb6CZseaVPRSe273hWws-gfaU6X9RajCW5gT_O2dQ3Y1TW5qGDj8eY0h-Tj-Wk5fo1m85fpOJ9FVsRJF6EADRItZEyXgJXUShUAVhSlZpJVcZGquBCclSKWKlG8hMqiKtOQKEEUckjuj39D7U-PvjPrpne7UGkki1XGWZKkgWJHyrrGe4eVaV29Bbc3nJmDMhOUmYMyc1IWInfHSI2I__Bwz3Qq_wD3vmZu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046910557</pqid></control><display><type>article</type><title>On ISS With Respect to Average Value of Disturbances: A Time-Delay Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Efimov, Denis ; Fridman, Emilia</creator><creatorcontrib>Efimov, Denis ; Fridman, Emilia</creatorcontrib><description>For input-affine nonlinear dynamical systems, an input-to-state stability analysis with respect to (weighted) average values of exogenous perturbations is proposed. The time-delay method is used to represent the system in a suitable form for investigation: A kind of neutral-type differential equation. The introduced approach allows the asymptotic gains with respect to zero-mean periodic signals to be evaluated for nonlinear systems (an analogue of Bode magnitude plot), as well as for integral input-to-state stable systems with periodic inputs. The results are illustrated on the class of homogeneous systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3337696</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Delay systems ; Differential equations ; Dynamic stability ; Dynamical systems ; Electrical engineering ; Gain measurement ; Nonlinear systems ; Perturbation methods ; Robustness ; Stability analysis ; Vibrations</subject><ispartof>IEEE transactions on automatic control, 2024-05, Vol.69 (5), p.3434-3440</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-e2a8a3eca908daef3866baac2bd8030f4b764b210d2436561dafce6d7ca9da2b3</cites><orcidid>0000-0002-8773-9494 ; 0000-0001-8847-5235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10333987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10333987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Efimov, Denis</creatorcontrib><creatorcontrib>Fridman, Emilia</creatorcontrib><title>On ISS With Respect to Average Value of Disturbances: A Time-Delay Approach</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>For input-affine nonlinear dynamical systems, an input-to-state stability analysis with respect to (weighted) average values of exogenous perturbations is proposed. The time-delay method is used to represent the system in a suitable form for investigation: A kind of neutral-type differential equation. The introduced approach allows the asymptotic gains with respect to zero-mean periodic signals to be evaluated for nonlinear systems (an analogue of Bode magnitude plot), as well as for integral input-to-state stable systems with periodic inputs. The results are illustrated on the class of homogeneous systems.</description><subject>Control systems</subject><subject>Delay systems</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Electrical engineering</subject><subject>Gain measurement</subject><subject>Nonlinear systems</subject><subject>Perturbation methods</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Vibrations</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7dj2Sz8RZaP4qFgq16XCabiU1pm7ibCP33bmkPnoZhnndeeAi55WzEOcselvl4JJiQIyllqjJ1RgY8SXQkEiHPyYAxrqNMaHVJrrxfh1XFMR-Qt_mOThcL-lV3K_qOvkXb0a6h-S86-Eb6CZseaVPRSe273hWws-gfaU6X9RajCW5gT_O2dQ3Y1TW5qGDj8eY0h-Tj-Wk5fo1m85fpOJ9FVsRJF6EADRItZEyXgJXUShUAVhSlZpJVcZGquBCclSKWKlG8hMqiKtOQKEEUckjuj39D7U-PvjPrpne7UGkki1XGWZKkgWJHyrrGe4eVaV29Bbc3nJmDMhOUmYMyc1IWInfHSI2I__Bwz3Qq_wD3vmZu</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Efimov, Denis</creator><creator>Fridman, Emilia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8773-9494</orcidid><orcidid>https://orcid.org/0000-0001-8847-5235</orcidid></search><sort><creationdate>20240501</creationdate><title>On ISS With Respect to Average Value of Disturbances: A Time-Delay Approach</title><author>Efimov, Denis ; Fridman, Emilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-e2a8a3eca908daef3866baac2bd8030f4b764b210d2436561dafce6d7ca9da2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Delay systems</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Electrical engineering</topic><topic>Gain measurement</topic><topic>Nonlinear systems</topic><topic>Perturbation methods</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efimov, Denis</creatorcontrib><creatorcontrib>Fridman, Emilia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Efimov, Denis</au><au>Fridman, Emilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On ISS With Respect to Average Value of Disturbances: A Time-Delay Approach</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>69</volume><issue>5</issue><spage>3434</spage><epage>3440</epage><pages>3434-3440</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>For input-affine nonlinear dynamical systems, an input-to-state stability analysis with respect to (weighted) average values of exogenous perturbations is proposed. The time-delay method is used to represent the system in a suitable form for investigation: A kind of neutral-type differential equation. The introduced approach allows the asymptotic gains with respect to zero-mean periodic signals to be evaluated for nonlinear systems (an analogue of Bode magnitude plot), as well as for integral input-to-state stable systems with periodic inputs. The results are illustrated on the class of homogeneous systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2023.3337696</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8773-9494</orcidid><orcidid>https://orcid.org/0000-0001-8847-5235</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-05, Vol.69 (5), p.3434-3440
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_10333987
source IEEE Electronic Library (IEL)
subjects Control systems
Delay systems
Differential equations
Dynamic stability
Dynamical systems
Electrical engineering
Gain measurement
Nonlinear systems
Perturbation methods
Robustness
Stability analysis
Vibrations
title On ISS With Respect to Average Value of Disturbances: A Time-Delay Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20ISS%20With%20Respect%20to%20Average%20Value%20of%20Disturbances:%20A%20Time-Delay%20Approach&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Efimov,%20Denis&rft.date=2024-05-01&rft.volume=69&rft.issue=5&rft.spage=3434&rft.epage=3440&rft.pages=3434-3440&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2023.3337696&rft_dat=%3Cproquest_RIE%3E3046910557%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046910557&rft_id=info:pmid/&rft_ieee_id=10333987&rfr_iscdi=true