Sag Measurement Method of Wind-Induced Vibration for Uniced Overhead Power Line via Laser Rangefinder and Angle Monitoring
The sag of overhead power lines is an important indicator of the construction quality and safe operation of power lines. If the sag is too large or too small, it will threaten the safety of the lines and lead to serious power grid accidents. Existing sag measurement methods have problems such as hig...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-16 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Zhang, Yuegang Fang, Yu Zhou, Xiaofa Liu, Xintian Yang, Hao Xu, Yang Wu, Xin Ren, Xingzhi |
description | The sag of overhead power lines is an important indicator of the construction quality and safe operation of power lines. If the sag is too large or too small, it will threaten the safety of the lines and lead to serious power grid accidents. Existing sag measurement methods have problems such as high manual labor intensity, complex deployment, and high operational requirements. This article considers the influence of wind-induced vibration, establishes a wind-induced vibration model and measurement model, and proposes a sag measurement method that combines laser ranging and angle sensors. The proposed method can be applied to actual engineering scenarios such as daily maintenance of power line sag, on-site construction, and small-scale monitoring. When the laser is perpendicular to the wire, the horizontal angle \theta _{\mathrm {vertical}} recorded by the angle sensor is an important parameter for calculating the 3-D coordinate data. In this work, a nonparametric estimation method is introduced for the first time to calculate the angle. In the 2-D plane, the improved progressive sample consensus (PROSAC) algorithm and the adaptive random sample consensus (RANSAC) algorithm are used to double filter the error points in the measurement data under the influence of wind-induced vibration, a 3-D model of the power line is fit, and the stochastic gradient descent (SGD) method is used to find the lowest point of sag and finally calculate the tangent sag. Experiments have proven that the calculation accuracy of the method in this work meets the requirements of the industry. It has the characteristics of convenient deployment, safety, and stability, which improves the safety and efficiency of overhead power line sag measurement work. |
doi_str_mv | 10.1109/TIM.2023.3334362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10330135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330135</ieee_id><sourcerecordid>2904673738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-71a39bebcfd26495ce8219d7f218cfd5bd055f8cfb34cac583770aad57319f13</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw58DBEucUP-I4OVYVj0qpiqDAMXLideuqtcFJiuDX46o9cNrZ0cyu9CF0TcmIUlLcLaazESOMjzjnKc_YCRpQIWRSZBk7RQNCaJ4UqcjO0UXbrgkhMkvlAP2-qiWegWr7AFtwXdTdymvsDf6wTidTp_sGNH63dVCd9Q4bH_Cbs3tzvoOwAqXxs_-GgEvrAO-swqVq4_qi3BJMPBK1chqP3XIDeOad7XywbnmJzozatHB1nEO0eLhfTJ6Scv44nYzLpGGp6BJJFS9qqBujWZYWooGc0UJLw2gePVFrIoSJsuZpoxqRcymJUlpITgtD-RDdHs5-Bv_VQ9tVa98HFz9WrCBpJrnkeUyRQ6oJvm0DmOoz2K0KPxUl1R5wFQFXe8DVEXCs3BwqFgD-xTknlAv-B1_pd_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904673738</pqid></control><display><type>article</type><title>Sag Measurement Method of Wind-Induced Vibration for Uniced Overhead Power Line via Laser Rangefinder and Angle Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yuegang ; Fang, Yu ; Zhou, Xiaofa ; Liu, Xintian ; Yang, Hao ; Xu, Yang ; Wu, Xin ; Ren, Xingzhi</creator><creatorcontrib>Zhang, Yuegang ; Fang, Yu ; Zhou, Xiaofa ; Liu, Xintian ; Yang, Hao ; Xu, Yang ; Wu, Xin ; Ren, Xingzhi</creatorcontrib><description>The sag of overhead power lines is an important indicator of the construction quality and safe operation of power lines. If the sag is too large or too small, it will threaten the safety of the lines and lead to serious power grid accidents. Existing sag measurement methods have problems such as high manual labor intensity, complex deployment, and high operational requirements. This article considers the influence of wind-induced vibration, establishes a wind-induced vibration model and measurement model, and proposes a sag measurement method that combines laser ranging and angle sensors. The proposed method can be applied to actual engineering scenarios such as daily maintenance of power line sag, on-site construction, and small-scale monitoring. When the laser is perpendicular to the wire, the horizontal angle <inline-formula> <tex-math notation="LaTeX">\theta _{\mathrm {vertical}} </tex-math></inline-formula> recorded by the angle sensor is an important parameter for calculating the 3-D coordinate data. In this work, a nonparametric estimation method is introduced for the first time to calculate the angle. In the 2-D plane, the improved progressive sample consensus (PROSAC) algorithm and the adaptive random sample consensus (RANSAC) algorithm are used to double filter the error points in the measurement data under the influence of wind-induced vibration, a 3-D model of the power line is fit, and the stochastic gradient descent (SGD) method is used to find the lowest point of sag and finally calculate the tangent sag. Experiments have proven that the calculation accuracy of the method in this work meets the requirements of the industry. It has the characteristics of convenient deployment, safety, and stability, which improves the safety and efficiency of overhead power line sag measurement work.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3334362</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive sampling ; Angle monitoring ; Error analysis ; Laser modes ; Laser range finders ; laser rangefinder ; Laser ranging ; Lasers ; Measurement by laser beam ; Measurement methods ; Monitoring ; overhead power line ; Physical work ; Power lines ; Safety ; Sag ; sag measurement ; Sensors ; Three dimensional models ; Transmission line measurements ; Vibration measurement ; Vibrations ; Wind effects ; wind-induced vibration ; Wires</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-71a39bebcfd26495ce8219d7f218cfd5bd055f8cfb34cac583770aad57319f13</cites><orcidid>0009-0003-8874-7546 ; 0000-0002-0971-6860 ; 0000-0002-5735-7815 ; 0009-0003-9206-7869 ; 0009-0002-4883-4082 ; 0000-0002-3395-9176 ; 0009-0000-1810-2222 ; 0000-0003-3786-5908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330135$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10330135$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yuegang</creatorcontrib><creatorcontrib>Fang, Yu</creatorcontrib><creatorcontrib>Zhou, Xiaofa</creatorcontrib><creatorcontrib>Liu, Xintian</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Ren, Xingzhi</creatorcontrib><title>Sag Measurement Method of Wind-Induced Vibration for Uniced Overhead Power Line via Laser Rangefinder and Angle Monitoring</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The sag of overhead power lines is an important indicator of the construction quality and safe operation of power lines. If the sag is too large or too small, it will threaten the safety of the lines and lead to serious power grid accidents. Existing sag measurement methods have problems such as high manual labor intensity, complex deployment, and high operational requirements. This article considers the influence of wind-induced vibration, establishes a wind-induced vibration model and measurement model, and proposes a sag measurement method that combines laser ranging and angle sensors. The proposed method can be applied to actual engineering scenarios such as daily maintenance of power line sag, on-site construction, and small-scale monitoring. When the laser is perpendicular to the wire, the horizontal angle <inline-formula> <tex-math notation="LaTeX">\theta _{\mathrm {vertical}} </tex-math></inline-formula> recorded by the angle sensor is an important parameter for calculating the 3-D coordinate data. In this work, a nonparametric estimation method is introduced for the first time to calculate the angle. In the 2-D plane, the improved progressive sample consensus (PROSAC) algorithm and the adaptive random sample consensus (RANSAC) algorithm are used to double filter the error points in the measurement data under the influence of wind-induced vibration, a 3-D model of the power line is fit, and the stochastic gradient descent (SGD) method is used to find the lowest point of sag and finally calculate the tangent sag. Experiments have proven that the calculation accuracy of the method in this work meets the requirements of the industry. It has the characteristics of convenient deployment, safety, and stability, which improves the safety and efficiency of overhead power line sag measurement work.</description><subject>Adaptive algorithms</subject><subject>Adaptive sampling</subject><subject>Angle monitoring</subject><subject>Error analysis</subject><subject>Laser modes</subject><subject>Laser range finders</subject><subject>laser rangefinder</subject><subject>Laser ranging</subject><subject>Lasers</subject><subject>Measurement by laser beam</subject><subject>Measurement methods</subject><subject>Monitoring</subject><subject>overhead power line</subject><subject>Physical work</subject><subject>Power lines</subject><subject>Safety</subject><subject>Sag</subject><subject>sag measurement</subject><subject>Sensors</subject><subject>Three dimensional models</subject><subject>Transmission line measurements</subject><subject>Vibration measurement</subject><subject>Vibrations</subject><subject>Wind effects</subject><subject>wind-induced vibration</subject><subject>Wires</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw58DBEucUP-I4OVYVj0qpiqDAMXLideuqtcFJiuDX46o9cNrZ0cyu9CF0TcmIUlLcLaazESOMjzjnKc_YCRpQIWRSZBk7RQNCaJ4UqcjO0UXbrgkhMkvlAP2-qiWegWr7AFtwXdTdymvsDf6wTidTp_sGNH63dVCd9Q4bH_Cbs3tzvoOwAqXxs_-GgEvrAO-swqVq4_qi3BJMPBK1chqP3XIDeOad7XywbnmJzozatHB1nEO0eLhfTJ6Scv44nYzLpGGp6BJJFS9qqBujWZYWooGc0UJLw2gePVFrIoSJsuZpoxqRcymJUlpITgtD-RDdHs5-Bv_VQ9tVa98HFz9WrCBpJrnkeUyRQ6oJvm0DmOoz2K0KPxUl1R5wFQFXe8DVEXCs3BwqFgD-xTknlAv-B1_pd_M</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhang, Yuegang</creator><creator>Fang, Yu</creator><creator>Zhou, Xiaofa</creator><creator>Liu, Xintian</creator><creator>Yang, Hao</creator><creator>Xu, Yang</creator><creator>Wu, Xin</creator><creator>Ren, Xingzhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-8874-7546</orcidid><orcidid>https://orcid.org/0000-0002-0971-6860</orcidid><orcidid>https://orcid.org/0000-0002-5735-7815</orcidid><orcidid>https://orcid.org/0009-0003-9206-7869</orcidid><orcidid>https://orcid.org/0009-0002-4883-4082</orcidid><orcidid>https://orcid.org/0000-0002-3395-9176</orcidid><orcidid>https://orcid.org/0009-0000-1810-2222</orcidid><orcidid>https://orcid.org/0000-0003-3786-5908</orcidid></search><sort><creationdate>2024</creationdate><title>Sag Measurement Method of Wind-Induced Vibration for Uniced Overhead Power Line via Laser Rangefinder and Angle Monitoring</title><author>Zhang, Yuegang ; Fang, Yu ; Zhou, Xiaofa ; Liu, Xintian ; Yang, Hao ; Xu, Yang ; Wu, Xin ; Ren, Xingzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-71a39bebcfd26495ce8219d7f218cfd5bd055f8cfb34cac583770aad57319f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive sampling</topic><topic>Angle monitoring</topic><topic>Error analysis</topic><topic>Laser modes</topic><topic>Laser range finders</topic><topic>laser rangefinder</topic><topic>Laser ranging</topic><topic>Lasers</topic><topic>Measurement by laser beam</topic><topic>Measurement methods</topic><topic>Monitoring</topic><topic>overhead power line</topic><topic>Physical work</topic><topic>Power lines</topic><topic>Safety</topic><topic>Sag</topic><topic>sag measurement</topic><topic>Sensors</topic><topic>Three dimensional models</topic><topic>Transmission line measurements</topic><topic>Vibration measurement</topic><topic>Vibrations</topic><topic>Wind effects</topic><topic>wind-induced vibration</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuegang</creatorcontrib><creatorcontrib>Fang, Yu</creatorcontrib><creatorcontrib>Zhou, Xiaofa</creatorcontrib><creatorcontrib>Liu, Xintian</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Ren, Xingzhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yuegang</au><au>Fang, Yu</au><au>Zhou, Xiaofa</au><au>Liu, Xintian</au><au>Yang, Hao</au><au>Xu, Yang</au><au>Wu, Xin</au><au>Ren, Xingzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sag Measurement Method of Wind-Induced Vibration for Uniced Overhead Power Line via Laser Rangefinder and Angle Monitoring</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The sag of overhead power lines is an important indicator of the construction quality and safe operation of power lines. If the sag is too large or too small, it will threaten the safety of the lines and lead to serious power grid accidents. Existing sag measurement methods have problems such as high manual labor intensity, complex deployment, and high operational requirements. This article considers the influence of wind-induced vibration, establishes a wind-induced vibration model and measurement model, and proposes a sag measurement method that combines laser ranging and angle sensors. The proposed method can be applied to actual engineering scenarios such as daily maintenance of power line sag, on-site construction, and small-scale monitoring. When the laser is perpendicular to the wire, the horizontal angle <inline-formula> <tex-math notation="LaTeX">\theta _{\mathrm {vertical}} </tex-math></inline-formula> recorded by the angle sensor is an important parameter for calculating the 3-D coordinate data. In this work, a nonparametric estimation method is introduced for the first time to calculate the angle. In the 2-D plane, the improved progressive sample consensus (PROSAC) algorithm and the adaptive random sample consensus (RANSAC) algorithm are used to double filter the error points in the measurement data under the influence of wind-induced vibration, a 3-D model of the power line is fit, and the stochastic gradient descent (SGD) method is used to find the lowest point of sag and finally calculate the tangent sag. Experiments have proven that the calculation accuracy of the method in this work meets the requirements of the industry. It has the characteristics of convenient deployment, safety, and stability, which improves the safety and efficiency of overhead power line sag measurement work.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3334362</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0003-8874-7546</orcidid><orcidid>https://orcid.org/0000-0002-0971-6860</orcidid><orcidid>https://orcid.org/0000-0002-5735-7815</orcidid><orcidid>https://orcid.org/0009-0003-9206-7869</orcidid><orcidid>https://orcid.org/0009-0002-4883-4082</orcidid><orcidid>https://orcid.org/0000-0002-3395-9176</orcidid><orcidid>https://orcid.org/0009-0000-1810-2222</orcidid><orcidid>https://orcid.org/0000-0003-3786-5908</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-16 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10330135 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Adaptive sampling Angle monitoring Error analysis Laser modes Laser range finders laser rangefinder Laser ranging Lasers Measurement by laser beam Measurement methods Monitoring overhead power line Physical work Power lines Safety Sag sag measurement Sensors Three dimensional models Transmission line measurements Vibration measurement Vibrations Wind effects wind-induced vibration Wires |
title | Sag Measurement Method of Wind-Induced Vibration for Uniced Overhead Power Line via Laser Rangefinder and Angle Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sag%20Measurement%20Method%20of%20Wind-Induced%20Vibration%20for%20Uniced%20Overhead%20Power%20Line%20via%20Laser%20Rangefinder%20and%20Angle%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zhang,%20Yuegang&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3334362&rft_dat=%3Cproquest_RIE%3E2904673738%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904673738&rft_id=info:pmid/&rft_ieee_id=10330135&rfr_iscdi=true |