Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors

The light's image is the primary source of information carrier in nature. Indeed, a single photon's image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on quantum engineering 2024, Vol.5, p.1-11
Hauptverfasser: Rezai, Mohammad, Salehi, Jawad A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on quantum engineering
container_volume 5
creator Rezai, Mohammad
Salehi, Jawad A.
description The light's image is the primary source of information carrier in nature. Indeed, a single photon's image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed of spatial phase modulators and 4f-processors with phase-only pupils having a characteristic periodicity that reduces the number of optical resources quadratically as compared to other conventional path-encoding techniques. In particular, this article employs quantum Fourier optics to implement some key quantum logical gates that can be instrumental in optical quantum computations. For instance, we demonstrate the principle by implementing the single-qubit Hadamard and the two-qubit controlled- not gates via simulation and optimization techniques. Due to various advantages of the proposed scheme, including the large information capacity of the photon wavefront, a quadratically reduced number of optical resources compared with other conventional path-encoding techniques, and dynamic programmability, the proposed scheme has the potential to be an essential contribution to linear optical quantum computing and optical quantum signal processing.
doi_str_mv 10.1109/TQE.2023.3336514
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10328681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10328681</ieee_id><doaj_id>oai_doaj_org_article_8e646cb60dab4304b73bc69f4fc9db02</doaj_id><sourcerecordid>2911479733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1c9f96992835ec5dd6ea57bb39e5bfdd08bbbf9b32fe97a1d8cc5f39c827d5733</originalsourceid><addsrcrecordid>eNpNUU1PAjEQbYwmEuTuwcMmnsF-7Hbbo0FQEgyQ4LnppykBurZdE_31LoKG00wm7715Mw-AWwRHCEH-sF5NRhhiMiKE0AqVF6CHKeNDxCC7POuvwSClDYQQVwhRiHtguWrlPre7Yhx2TZtl9mFffHpZvLbb7JsQc_Hkk442-29rij_0NLTR21gsmuy13BbLGLRNKcR0A66c3CY7ONU-eJtO1uOX4XzxPBs_zoe6hDAPkeaOU84xI5XVlTHUyqpWinBbKWcMZEopxxXBzvJaIsO0rhzhmuHaVDUhfTA76pogN6KJfifjlwjSi99BiO9Cxs7c1gpmaUm1otBIVRJYqpooTbkrneZGdW_rg_ujVhPDR2tTFpvuvn1nX2COUFnzbmGHgkeUjiGlaN3_VgTFIQbRxSAOMYhTDB3l7kjx1tozOMGMMkR-AE25hMQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911479733</pqid></control><display><type>article</type><title>Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Rezai, Mohammad ; Salehi, Jawad A.</creator><creatorcontrib>Rezai, Mohammad ; Salehi, Jawad A.</creatorcontrib><description>The light's image is the primary source of information carrier in nature. Indeed, a single photon's image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed of spatial phase modulators and 4f-processors with phase-only pupils having a characteristic periodicity that reduces the number of optical resources quadratically as compared to other conventional path-encoding techniques. In particular, this article employs quantum Fourier optics to implement some key quantum logical gates that can be instrumental in optical quantum computations. For instance, we demonstrate the principle by implementing the single-qubit Hadamard and the two-qubit controlled- not gates via simulation and optimization techniques. Due to various advantages of the proposed scheme, including the large information capacity of the photon wavefront, a quadratically reduced number of optical resources compared with other conventional path-encoding techniques, and dynamic programmability, the proposed scheme has the potential to be an essential contribution to linear optical quantum computing and optical quantum signal processing.</description><identifier>ISSN: 2689-1808</identifier><identifier>EISSN: 2689-1808</identifier><identifier>DOI: 10.1109/TQE.2023.3336514</identifier><identifier>CODEN: ITQEA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive optics ; CNOT gate ; Coding ; Data processing ; discrete unitary operator ; Discretization ; Fourier optical quantum computing ; Hadamard gate ; Information processing ; Integrated optics ; linear optical quantum computing ; Logic circuits ; Modulators ; Optical communication ; Optical imaging ; Optical interferometry ; Optical signal processing ; Optimization techniques ; Photonics ; Photons ; Processors ; Quantum computing ; quantum Fourier optics ; Quantum phenomena ; Qubits (quantum computing) ; universal multiport interferometer ; universal multiport processor ; Wave fronts</subject><ispartof>IEEE transactions on quantum engineering, 2024, Vol.5, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1c9f96992835ec5dd6ea57bb39e5bfdd08bbbf9b32fe97a1d8cc5f39c827d5733</citedby><cites>FETCH-LOGICAL-c400t-1c9f96992835ec5dd6ea57bb39e5bfdd08bbbf9b32fe97a1d8cc5f39c827d5733</cites><orcidid>0000-0002-1524-9971 ; 0000-0001-8595-8418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10328681$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rezai, Mohammad</creatorcontrib><creatorcontrib>Salehi, Jawad A.</creatorcontrib><title>Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors</title><title>IEEE transactions on quantum engineering</title><addtitle>TQE</addtitle><description>The light's image is the primary source of information carrier in nature. Indeed, a single photon's image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed of spatial phase modulators and 4f-processors with phase-only pupils having a characteristic periodicity that reduces the number of optical resources quadratically as compared to other conventional path-encoding techniques. In particular, this article employs quantum Fourier optics to implement some key quantum logical gates that can be instrumental in optical quantum computations. For instance, we demonstrate the principle by implementing the single-qubit Hadamard and the two-qubit controlled- not gates via simulation and optimization techniques. Due to various advantages of the proposed scheme, including the large information capacity of the photon wavefront, a quadratically reduced number of optical resources compared with other conventional path-encoding techniques, and dynamic programmability, the proposed scheme has the potential to be an essential contribution to linear optical quantum computing and optical quantum signal processing.</description><subject>Adaptive optics</subject><subject>CNOT gate</subject><subject>Coding</subject><subject>Data processing</subject><subject>discrete unitary operator</subject><subject>Discretization</subject><subject>Fourier optical quantum computing</subject><subject>Hadamard gate</subject><subject>Information processing</subject><subject>Integrated optics</subject><subject>linear optical quantum computing</subject><subject>Logic circuits</subject><subject>Modulators</subject><subject>Optical communication</subject><subject>Optical imaging</subject><subject>Optical interferometry</subject><subject>Optical signal processing</subject><subject>Optimization techniques</subject><subject>Photonics</subject><subject>Photons</subject><subject>Processors</subject><subject>Quantum computing</subject><subject>quantum Fourier optics</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>universal multiport interferometer</subject><subject>universal multiport processor</subject><subject>Wave fronts</subject><issn>2689-1808</issn><issn>2689-1808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PAjEQbYwmEuTuwcMmnsF-7Hbbo0FQEgyQ4LnppykBurZdE_31LoKG00wm7715Mw-AWwRHCEH-sF5NRhhiMiKE0AqVF6CHKeNDxCC7POuvwSClDYQQVwhRiHtguWrlPre7Yhx2TZtl9mFffHpZvLbb7JsQc_Hkk442-29rij_0NLTR21gsmuy13BbLGLRNKcR0A66c3CY7ONU-eJtO1uOX4XzxPBs_zoe6hDAPkeaOU84xI5XVlTHUyqpWinBbKWcMZEopxxXBzvJaIsO0rhzhmuHaVDUhfTA76pogN6KJfifjlwjSi99BiO9Cxs7c1gpmaUm1otBIVRJYqpooTbkrneZGdW_rg_ujVhPDR2tTFpvuvn1nX2COUFnzbmGHgkeUjiGlaN3_VgTFIQbRxSAOMYhTDB3l7kjx1tozOMGMMkR-AE25hMQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rezai, Mohammad</creator><creator>Salehi, Jawad A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1524-9971</orcidid><orcidid>https://orcid.org/0000-0001-8595-8418</orcidid></search><sort><creationdate>2024</creationdate><title>Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors</title><author>Rezai, Mohammad ; Salehi, Jawad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1c9f96992835ec5dd6ea57bb39e5bfdd08bbbf9b32fe97a1d8cc5f39c827d5733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive optics</topic><topic>CNOT gate</topic><topic>Coding</topic><topic>Data processing</topic><topic>discrete unitary operator</topic><topic>Discretization</topic><topic>Fourier optical quantum computing</topic><topic>Hadamard gate</topic><topic>Information processing</topic><topic>Integrated optics</topic><topic>linear optical quantum computing</topic><topic>Logic circuits</topic><topic>Modulators</topic><topic>Optical communication</topic><topic>Optical imaging</topic><topic>Optical interferometry</topic><topic>Optical signal processing</topic><topic>Optimization techniques</topic><topic>Photonics</topic><topic>Photons</topic><topic>Processors</topic><topic>Quantum computing</topic><topic>quantum Fourier optics</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>universal multiport interferometer</topic><topic>universal multiport processor</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezai, Mohammad</creatorcontrib><creatorcontrib>Salehi, Jawad A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on quantum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezai, Mohammad</au><au>Salehi, Jawad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors</atitle><jtitle>IEEE transactions on quantum engineering</jtitle><stitle>TQE</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2689-1808</issn><eissn>2689-1808</eissn><coden>ITQEA9</coden><abstract>The light's image is the primary source of information carrier in nature. Indeed, a single photon's image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed of spatial phase modulators and 4f-processors with phase-only pupils having a characteristic periodicity that reduces the number of optical resources quadratically as compared to other conventional path-encoding techniques. In particular, this article employs quantum Fourier optics to implement some key quantum logical gates that can be instrumental in optical quantum computations. For instance, we demonstrate the principle by implementing the single-qubit Hadamard and the two-qubit controlled- not gates via simulation and optimization techniques. Due to various advantages of the proposed scheme, including the large information capacity of the photon wavefront, a quadratically reduced number of optical resources compared with other conventional path-encoding techniques, and dynamic programmability, the proposed scheme has the potential to be an essential contribution to linear optical quantum computing and optical quantum signal processing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TQE.2023.3336514</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1524-9971</orcidid><orcidid>https://orcid.org/0000-0001-8595-8418</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2689-1808
ispartof IEEE transactions on quantum engineering, 2024, Vol.5, p.1-11
issn 2689-1808
2689-1808
language eng
recordid cdi_ieee_primary_10328681
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Adaptive optics
CNOT gate
Coding
Data processing
discrete unitary operator
Discretization
Fourier optical quantum computing
Hadamard gate
Information processing
Integrated optics
linear optical quantum computing
Logic circuits
Modulators
Optical communication
Optical imaging
Optical interferometry
Optical signal processing
Optimization techniques
Photonics
Photons
Processors
Quantum computing
quantum Fourier optics
Quantum phenomena
Qubits (quantum computing)
universal multiport interferometer
universal multiport processor
Wave fronts
title Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Computation%20via%20Multiport%20Discretized%20Quantum%20Fourier%20Optical%20Processors&rft.jtitle=IEEE%20transactions%20on%20quantum%20engineering&rft.au=Rezai,%20Mohammad&rft.date=2024&rft.volume=5&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2689-1808&rft.eissn=2689-1808&rft.coden=ITQEA9&rft_id=info:doi/10.1109/TQE.2023.3336514&rft_dat=%3Cproquest_ieee_%3E2911479733%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911479733&rft_id=info:pmid/&rft_ieee_id=10328681&rft_doaj_id=oai_doaj_org_article_8e646cb60dab4304b73bc69f4fc9db02&rfr_iscdi=true