On Frequency-Based Log-Optimal Portfolio With Transaction Costs
This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incor...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2023, Vol.7, p.3489-3494 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3494 |
---|---|
container_issue | |
container_start_page | 3489 |
container_title | IEEE control systems letters |
container_volume | 7 |
creator | Wong, Yi-Shan Hsieh, Chung-Han |
description | This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data. |
doi_str_mv | 10.1109/LCSYS.2023.3334951 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10324307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10324307</ieee_id><sourcerecordid>10_1109_LCSYS_2023_3334951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-d9dee02d6a56caa393e09604769653d0f96d866391f1a473f2d4ee05dee70b333</originalsourceid><addsrcrecordid>eNpNkEFOwzAQRS0EElXpBRCLXMBh7HHseoUgooAUKUgtQqwsEzsQVOJih0VvT0q76Gr-5n39eYRcMsgZA31dlcu3Zc6BY46IQhfshEy4UAVlopCnR_mczFL6AgA25wq4npCbus8W0f_8-r7Z0jubvMuq8EHrzdB923X2HOLQhnUXstdu-MxW0fbJNkMX-qwMaUgX5Ky16-RnhzslL4v7VflIq_rhqbytaMOZHqjTznvgTtpCNtaiRg9aglBSywIdtFq6uZSoWcusUNhyJ0agGCkF7-NXU8L3vU0MKUXfmk0cB8atYWB2Fsy_BbOzYA4WRuhqD3Xe-yMAuUBQ-Ad95Fhz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Frequency-Based Log-Optimal Portfolio With Transaction Costs</title><source>IEEE Electronic Library (IEL)</source><creator>Wong, Yi-Shan ; Hsieh, Chung-Han</creator><creatorcontrib>Wong, Yi-Shan ; Hsieh, Chung-Han</creatorcontrib><description>This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2023.3334951</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>control and optimization ; Costs ; Investment ; log-optimal portfolio ; Optimization ; Portfolio optimization ; Portfolios ; rebalancing frequency ; Sufficient conditions ; Switches ; Symbols ; transaction costs</subject><ispartof>IEEE control systems letters, 2023, Vol.7, p.3489-3494</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-d9dee02d6a56caa393e09604769653d0f96d866391f1a473f2d4ee05dee70b333</cites><orcidid>0009-0006-6714-2953 ; 0000-0002-1399-3449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10324307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10324307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wong, Yi-Shan</creatorcontrib><creatorcontrib>Hsieh, Chung-Han</creatorcontrib><title>On Frequency-Based Log-Optimal Portfolio With Transaction Costs</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data.</description><subject>control and optimization</subject><subject>Costs</subject><subject>Investment</subject><subject>log-optimal portfolio</subject><subject>Optimization</subject><subject>Portfolio optimization</subject><subject>Portfolios</subject><subject>rebalancing frequency</subject><subject>Sufficient conditions</subject><subject>Switches</subject><subject>Symbols</subject><subject>transaction costs</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFOwzAQRS0EElXpBRCLXMBh7HHseoUgooAUKUgtQqwsEzsQVOJih0VvT0q76Gr-5n39eYRcMsgZA31dlcu3Zc6BY46IQhfshEy4UAVlopCnR_mczFL6AgA25wq4npCbus8W0f_8-r7Z0jubvMuq8EHrzdB923X2HOLQhnUXstdu-MxW0fbJNkMX-qwMaUgX5Ky16-RnhzslL4v7VflIq_rhqbytaMOZHqjTznvgTtpCNtaiRg9aglBSywIdtFq6uZSoWcusUNhyJ0agGCkF7-NXU8L3vU0MKUXfmk0cB8atYWB2Fsy_BbOzYA4WRuhqD3Xe-yMAuUBQ-Ad95Fhz</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wong, Yi-Shan</creator><creator>Hsieh, Chung-Han</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-6714-2953</orcidid><orcidid>https://orcid.org/0000-0002-1399-3449</orcidid></search><sort><creationdate>2023</creationdate><title>On Frequency-Based Log-Optimal Portfolio With Transaction Costs</title><author>Wong, Yi-Shan ; Hsieh, Chung-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-d9dee02d6a56caa393e09604769653d0f96d866391f1a473f2d4ee05dee70b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>control and optimization</topic><topic>Costs</topic><topic>Investment</topic><topic>log-optimal portfolio</topic><topic>Optimization</topic><topic>Portfolio optimization</topic><topic>Portfolios</topic><topic>rebalancing frequency</topic><topic>Sufficient conditions</topic><topic>Switches</topic><topic>Symbols</topic><topic>transaction costs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Yi-Shan</creatorcontrib><creatorcontrib>Hsieh, Chung-Han</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wong, Yi-Shan</au><au>Hsieh, Chung-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Frequency-Based Log-Optimal Portfolio With Transaction Costs</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2023</date><risdate>2023</risdate><volume>7</volume><spage>3489</spage><epage>3494</epage><pages>3489-3494</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2023.3334951</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0006-6714-2953</orcidid><orcidid>https://orcid.org/0000-0002-1399-3449</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2023, Vol.7, p.3489-3494 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_ieee_primary_10324307 |
source | IEEE Electronic Library (IEL) |
subjects | control and optimization Costs Investment log-optimal portfolio Optimization Portfolio optimization Portfolios rebalancing frequency Sufficient conditions Switches Symbols transaction costs |
title | On Frequency-Based Log-Optimal Portfolio With Transaction Costs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Frequency-Based%20Log-Optimal%20Portfolio%20With%20Transaction%20Costs&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Wong,%20Yi-Shan&rft.date=2023&rft.volume=7&rft.spage=3489&rft.epage=3494&rft.pages=3489-3494&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2023.3334951&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2023_3334951%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10324307&rfr_iscdi=true |