On Frequency-Based Log-Optimal Portfolio With Transaction Costs

This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2023, Vol.7, p.3489-3494
Hauptverfasser: Wong, Yi-Shan, Hsieh, Chung-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3494
container_issue
container_start_page 3489
container_title IEEE control systems letters
container_volume 7
creator Wong, Yi-Shan
Hsieh, Chung-Han
description This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data.
doi_str_mv 10.1109/LCSYS.2023.3334951
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10324307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10324307</ieee_id><sourcerecordid>10_1109_LCSYS_2023_3334951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-d9dee02d6a56caa393e09604769653d0f96d866391f1a473f2d4ee05dee70b333</originalsourceid><addsrcrecordid>eNpNkEFOwzAQRS0EElXpBRCLXMBh7HHseoUgooAUKUgtQqwsEzsQVOJih0VvT0q76Gr-5n39eYRcMsgZA31dlcu3Zc6BY46IQhfshEy4UAVlopCnR_mczFL6AgA25wq4npCbus8W0f_8-r7Z0jubvMuq8EHrzdB923X2HOLQhnUXstdu-MxW0fbJNkMX-qwMaUgX5Ky16-RnhzslL4v7VflIq_rhqbytaMOZHqjTznvgTtpCNtaiRg9aglBSywIdtFq6uZSoWcusUNhyJ0agGCkF7-NXU8L3vU0MKUXfmk0cB8atYWB2Fsy_BbOzYA4WRuhqD3Xe-yMAuUBQ-Ad95Fhz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Frequency-Based Log-Optimal Portfolio With Transaction Costs</title><source>IEEE Electronic Library (IEL)</source><creator>Wong, Yi-Shan ; Hsieh, Chung-Han</creator><creatorcontrib>Wong, Yi-Shan ; Hsieh, Chung-Han</creatorcontrib><description>This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2023.3334951</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>control and optimization ; Costs ; Investment ; log-optimal portfolio ; Optimization ; Portfolio optimization ; Portfolios ; rebalancing frequency ; Sufficient conditions ; Switches ; Symbols ; transaction costs</subject><ispartof>IEEE control systems letters, 2023, Vol.7, p.3489-3494</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-d9dee02d6a56caa393e09604769653d0f96d866391f1a473f2d4ee05dee70b333</cites><orcidid>0009-0006-6714-2953 ; 0000-0002-1399-3449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10324307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10324307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wong, Yi-Shan</creatorcontrib><creatorcontrib>Hsieh, Chung-Han</creatorcontrib><title>On Frequency-Based Log-Optimal Portfolio With Transaction Costs</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data.</description><subject>control and optimization</subject><subject>Costs</subject><subject>Investment</subject><subject>log-optimal portfolio</subject><subject>Optimization</subject><subject>Portfolio optimization</subject><subject>Portfolios</subject><subject>rebalancing frequency</subject><subject>Sufficient conditions</subject><subject>Switches</subject><subject>Symbols</subject><subject>transaction costs</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFOwzAQRS0EElXpBRCLXMBh7HHseoUgooAUKUgtQqwsEzsQVOJih0VvT0q76Gr-5n39eYRcMsgZA31dlcu3Zc6BY46IQhfshEy4UAVlopCnR_mczFL6AgA25wq4npCbus8W0f_8-r7Z0jubvMuq8EHrzdB923X2HOLQhnUXstdu-MxW0fbJNkMX-qwMaUgX5Ky16-RnhzslL4v7VflIq_rhqbytaMOZHqjTznvgTtpCNtaiRg9aglBSywIdtFq6uZSoWcusUNhyJ0agGCkF7-NXU8L3vU0MKUXfmk0cB8atYWB2Fsy_BbOzYA4WRuhqD3Xe-yMAuUBQ-Ad95Fhz</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wong, Yi-Shan</creator><creator>Hsieh, Chung-Han</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-6714-2953</orcidid><orcidid>https://orcid.org/0000-0002-1399-3449</orcidid></search><sort><creationdate>2023</creationdate><title>On Frequency-Based Log-Optimal Portfolio With Transaction Costs</title><author>Wong, Yi-Shan ; Hsieh, Chung-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-d9dee02d6a56caa393e09604769653d0f96d866391f1a473f2d4ee05dee70b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>control and optimization</topic><topic>Costs</topic><topic>Investment</topic><topic>log-optimal portfolio</topic><topic>Optimization</topic><topic>Portfolio optimization</topic><topic>Portfolios</topic><topic>rebalancing frequency</topic><topic>Sufficient conditions</topic><topic>Switches</topic><topic>Symbols</topic><topic>transaction costs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Yi-Shan</creatorcontrib><creatorcontrib>Hsieh, Chung-Han</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wong, Yi-Shan</au><au>Hsieh, Chung-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Frequency-Based Log-Optimal Portfolio With Transaction Costs</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2023</date><risdate>2023</risdate><volume>7</volume><spage>3489</spage><epage>3494</epage><pages>3489-3494</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>This letter investigates the impact of both rebalancing frequency and transaction costs on the log-optimal portfolio, defined as a portfolio that maximizes the expected logarithmic growth rate of an investor's wealth. We establish that the frequency-dependent log-optimal portfolio problem incorporating transaction costs is equivalent to a concave program. We also provide a version of the dominance theorem that incorporates cost considerations, enabling the identification of scenarios in which an investor should invest all available funds in a single asset. Then, we solve for an approximate quadratic concave program and derive both necessary and sufficient optimality conditions. Additionally, we establish a version of the two-fund theorem, asserting that any convex combination of two optimal weights derived from the optimality conditions remains optimal. To support our results, we conduct empirical studies using intraday price data.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2023.3334951</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0006-6714-2953</orcidid><orcidid>https://orcid.org/0000-0002-1399-3449</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2023, Vol.7, p.3489-3494
issn 2475-1456
2475-1456
language eng
recordid cdi_ieee_primary_10324307
source IEEE Electronic Library (IEL)
subjects control and optimization
Costs
Investment
log-optimal portfolio
Optimization
Portfolio optimization
Portfolios
rebalancing frequency
Sufficient conditions
Switches
Symbols
transaction costs
title On Frequency-Based Log-Optimal Portfolio With Transaction Costs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Frequency-Based%20Log-Optimal%20Portfolio%20With%20Transaction%20Costs&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Wong,%20Yi-Shan&rft.date=2023&rft.volume=7&rft.spage=3489&rft.epage=3494&rft.pages=3489-3494&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2023.3334951&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2023_3334951%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10324307&rfr_iscdi=true