Magnetic Resonance Enhanced Prestress Monitoring for Prestressed Tendons

A high-sensitivity prestress monitoring method by the magnetic resonance (MR) effect was proposed in this work. An experiment on prestress monitoring in the life cycle was carried on. The results showed that, after the initial tensioning, the induced voltage was determined by the prestress instead o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-01, Vol.24 (1), p.885-894
Hauptverfasser: Zhang, Senhua, Zhang, Hong, Zhou, Jianting, Xia, Junfeng, Hu, Kemeng, Li, Shuangjiang, Liao, Leng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 894
container_issue 1
container_start_page 885
container_title IEEE sensors journal
container_volume 24
creator Zhang, Senhua
Zhang, Hong
Zhou, Jianting
Xia, Junfeng
Hu, Kemeng
Li, Shuangjiang
Liao, Leng
description A high-sensitivity prestress monitoring method by the magnetic resonance (MR) effect was proposed in this work. An experiment on prestress monitoring in the life cycle was carried on. The results showed that, after the initial tensioning, the induced voltage was determined by the prestress instead of the prestress history as usual. Moreover, under the higher excitation magnetic field, the MR method owned weaker hysteresis and higher stability. The sensitivity was increased by 125.58%/kN - 0.0194%/kN, which was close to four times the sensitivity of the magnetoelastic method. Obtaining the induced voltage-prestress relationship by laboratory calibration, the prestress monitoring errors corresponding to the construction stage and the operation stage were 8.9% and 10.9%, respectively. When the prestress is monitored only in the operation stage, the prestress monitoring error was reduced to 9.1% by using the self-calibration method. Since the proposed method can monitor the prestress varied within 100% design prestress, the proposed method can be used for short cables with a large stress amplitude.
doi_str_mv 10.1109/JSEN.2023.3333370
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10322679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10322679</ieee_id><sourcerecordid>2909283870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2a67644eb8142d18b7363246548ccfe7d569ddea4f105ecfda4d693404b9ce6a3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgrf4AwcOC56352mRzlFJbpVXRCt5CmszWLZrUZHvw35ulBR0Y3sB7b2Z4CF0SPCIEq5uH18njiGLKRqwviY_QgFRVXRLJ6-N-ZrjkTL6forOUNhgTJSs5QLOFWXvoWlu8QAreeAvFxH_06IrnCKnLnYpF8G0XYuvXRRPiH5FFS_Au-HSOThrzmeDigEP0djdZjmfl_Gl6P76dl5Zy0ZXUCCk4h1VNOHWkXkkmWGYqXlvbgHSVUM6B4Q3BFdjGGe6EYhzzlbIgDBui6_3ebQzfu_yG3oRd9PmkpgorWrNa4qwie5WNIaUIjd7G9svEH02w7gPTfWC6D0wfAsueq72nBYB_ekapkIr9AlOrZ3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909283870</pqid></control><display><type>article</type><title>Magnetic Resonance Enhanced Prestress Monitoring for Prestressed Tendons</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Senhua ; Zhang, Hong ; Zhou, Jianting ; Xia, Junfeng ; Hu, Kemeng ; Li, Shuangjiang ; Liao, Leng</creator><creatorcontrib>Zhang, Senhua ; Zhang, Hong ; Zhou, Jianting ; Xia, Junfeng ; Hu, Kemeng ; Li, Shuangjiang ; Liao, Leng</creatorcontrib><description>A high-sensitivity prestress monitoring method by the magnetic resonance (MR) effect was proposed in this work. An experiment on prestress monitoring in the life cycle was carried on. The results showed that, after the initial tensioning, the induced voltage was determined by the prestress instead of the prestress history as usual. Moreover, under the higher excitation magnetic field, the MR method owned weaker hysteresis and higher stability. The sensitivity was increased by 125.58%/kN - 0.0194%/kN, which was close to four times the sensitivity of the magnetoelastic method. Obtaining the induced voltage-prestress relationship by laboratory calibration, the prestress monitoring errors corresponding to the construction stage and the operation stage were 8.9% and 10.9%, respectively. When the prestress is monitored only in the operation stage, the prestress monitoring error was reduced to 9.1% by using the self-calibration method. Since the proposed method can monitor the prestress varied within 100% design prestress, the proposed method can be used for short cables with a large stress amplitude.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3333370</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cables ; Calibration ; Core loss ; Error reduction ; High sensitivity ; Induced voltage ; large stress amplitude ; Magnetic hysteresis ; Magnetic resonance ; magnetic resonance (MR) method ; Magnetic sensors ; Magnetomechanical effects ; Monitoring ; prestress ; Prestressing ; Self calibration ; Sensitivity ; Stress ; Tensioning</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (1), p.885-894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2a67644eb8142d18b7363246548ccfe7d569ddea4f105ecfda4d693404b9ce6a3</cites><orcidid>0000-0003-2674-5636 ; 0009-0008-5413-2355 ; 0000-0002-5981-4696 ; 0009-0006-4189-6415 ; 0000-0002-3420-7208 ; 0000-0002-1130-3600 ; 0000-0001-6968-2458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10322679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10322679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Senhua</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zhou, Jianting</creatorcontrib><creatorcontrib>Xia, Junfeng</creatorcontrib><creatorcontrib>Hu, Kemeng</creatorcontrib><creatorcontrib>Li, Shuangjiang</creatorcontrib><creatorcontrib>Liao, Leng</creatorcontrib><title>Magnetic Resonance Enhanced Prestress Monitoring for Prestressed Tendons</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A high-sensitivity prestress monitoring method by the magnetic resonance (MR) effect was proposed in this work. An experiment on prestress monitoring in the life cycle was carried on. The results showed that, after the initial tensioning, the induced voltage was determined by the prestress instead of the prestress history as usual. Moreover, under the higher excitation magnetic field, the MR method owned weaker hysteresis and higher stability. The sensitivity was increased by 125.58%/kN - 0.0194%/kN, which was close to four times the sensitivity of the magnetoelastic method. Obtaining the induced voltage-prestress relationship by laboratory calibration, the prestress monitoring errors corresponding to the construction stage and the operation stage were 8.9% and 10.9%, respectively. When the prestress is monitored only in the operation stage, the prestress monitoring error was reduced to 9.1% by using the self-calibration method. Since the proposed method can monitor the prestress varied within 100% design prestress, the proposed method can be used for short cables with a large stress amplitude.</description><subject>Cables</subject><subject>Calibration</subject><subject>Core loss</subject><subject>Error reduction</subject><subject>High sensitivity</subject><subject>Induced voltage</subject><subject>large stress amplitude</subject><subject>Magnetic hysteresis</subject><subject>Magnetic resonance</subject><subject>magnetic resonance (MR) method</subject><subject>Magnetic sensors</subject><subject>Magnetomechanical effects</subject><subject>Monitoring</subject><subject>prestress</subject><subject>Prestressing</subject><subject>Self calibration</subject><subject>Sensitivity</subject><subject>Stress</subject><subject>Tensioning</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1LAzEQDaJgrf4AwcOC56352mRzlFJbpVXRCt5CmszWLZrUZHvw35ulBR0Y3sB7b2Z4CF0SPCIEq5uH18njiGLKRqwviY_QgFRVXRLJ6-N-ZrjkTL6forOUNhgTJSs5QLOFWXvoWlu8QAreeAvFxH_06IrnCKnLnYpF8G0XYuvXRRPiH5FFS_Au-HSOThrzmeDigEP0djdZjmfl_Gl6P76dl5Zy0ZXUCCk4h1VNOHWkXkkmWGYqXlvbgHSVUM6B4Q3BFdjGGe6EYhzzlbIgDBui6_3ebQzfu_yG3oRd9PmkpgorWrNa4qwie5WNIaUIjd7G9svEH02w7gPTfWC6D0wfAsueq72nBYB_ekapkIr9AlOrZ3Y</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhang, Senhua</creator><creator>Zhang, Hong</creator><creator>Zhou, Jianting</creator><creator>Xia, Junfeng</creator><creator>Hu, Kemeng</creator><creator>Li, Shuangjiang</creator><creator>Liao, Leng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2674-5636</orcidid><orcidid>https://orcid.org/0009-0008-5413-2355</orcidid><orcidid>https://orcid.org/0000-0002-5981-4696</orcidid><orcidid>https://orcid.org/0009-0006-4189-6415</orcidid><orcidid>https://orcid.org/0000-0002-3420-7208</orcidid><orcidid>https://orcid.org/0000-0002-1130-3600</orcidid><orcidid>https://orcid.org/0000-0001-6968-2458</orcidid></search><sort><creationdate>20240101</creationdate><title>Magnetic Resonance Enhanced Prestress Monitoring for Prestressed Tendons</title><author>Zhang, Senhua ; Zhang, Hong ; Zhou, Jianting ; Xia, Junfeng ; Hu, Kemeng ; Li, Shuangjiang ; Liao, Leng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2a67644eb8142d18b7363246548ccfe7d569ddea4f105ecfda4d693404b9ce6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cables</topic><topic>Calibration</topic><topic>Core loss</topic><topic>Error reduction</topic><topic>High sensitivity</topic><topic>Induced voltage</topic><topic>large stress amplitude</topic><topic>Magnetic hysteresis</topic><topic>Magnetic resonance</topic><topic>magnetic resonance (MR) method</topic><topic>Magnetic sensors</topic><topic>Magnetomechanical effects</topic><topic>Monitoring</topic><topic>prestress</topic><topic>Prestressing</topic><topic>Self calibration</topic><topic>Sensitivity</topic><topic>Stress</topic><topic>Tensioning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Senhua</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zhou, Jianting</creatorcontrib><creatorcontrib>Xia, Junfeng</creatorcontrib><creatorcontrib>Hu, Kemeng</creatorcontrib><creatorcontrib>Li, Shuangjiang</creatorcontrib><creatorcontrib>Liao, Leng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Senhua</au><au>Zhang, Hong</au><au>Zhou, Jianting</au><au>Xia, Junfeng</au><au>Hu, Kemeng</au><au>Li, Shuangjiang</au><au>Liao, Leng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance Enhanced Prestress Monitoring for Prestressed Tendons</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>885</spage><epage>894</epage><pages>885-894</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A high-sensitivity prestress monitoring method by the magnetic resonance (MR) effect was proposed in this work. An experiment on prestress monitoring in the life cycle was carried on. The results showed that, after the initial tensioning, the induced voltage was determined by the prestress instead of the prestress history as usual. Moreover, under the higher excitation magnetic field, the MR method owned weaker hysteresis and higher stability. The sensitivity was increased by 125.58%/kN - 0.0194%/kN, which was close to four times the sensitivity of the magnetoelastic method. Obtaining the induced voltage-prestress relationship by laboratory calibration, the prestress monitoring errors corresponding to the construction stage and the operation stage were 8.9% and 10.9%, respectively. When the prestress is monitored only in the operation stage, the prestress monitoring error was reduced to 9.1% by using the self-calibration method. Since the proposed method can monitor the prestress varied within 100% design prestress, the proposed method can be used for short cables with a large stress amplitude.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3333370</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2674-5636</orcidid><orcidid>https://orcid.org/0009-0008-5413-2355</orcidid><orcidid>https://orcid.org/0000-0002-5981-4696</orcidid><orcidid>https://orcid.org/0009-0006-4189-6415</orcidid><orcidid>https://orcid.org/0000-0002-3420-7208</orcidid><orcidid>https://orcid.org/0000-0002-1130-3600</orcidid><orcidid>https://orcid.org/0000-0001-6968-2458</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-01, Vol.24 (1), p.885-894
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10322679
source IEEE Electronic Library (IEL)
subjects Cables
Calibration
Core loss
Error reduction
High sensitivity
Induced voltage
large stress amplitude
Magnetic hysteresis
Magnetic resonance
magnetic resonance (MR) method
Magnetic sensors
Magnetomechanical effects
Monitoring
prestress
Prestressing
Self calibration
Sensitivity
Stress
Tensioning
title Magnetic Resonance Enhanced Prestress Monitoring for Prestressed Tendons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20Enhanced%20Prestress%20Monitoring%20for%20Prestressed%20Tendons&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Senhua&rft.date=2024-01-01&rft.volume=24&rft.issue=1&rft.spage=885&rft.epage=894&rft.pages=885-894&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3333370&rft_dat=%3Cproquest_RIE%3E2909283870%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909283870&rft_id=info:pmid/&rft_ieee_id=10322679&rfr_iscdi=true