Enabling Online GaN Power Device Self-Health Monitoring With Analog SGD Supervised Learning and TJ-Independent Precursor Measurement

In order to mitigate reliability challenges on emerging wide-bandgap (WBG) gallium nitride (GaN) power devices, this article investigates a software-hardware codesign solution utilizing online device condition monitoring and machine-learning technologies, with an ultimate goal of achieving intellige...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2024-06, Vol.59 (6), p.1735-1746
Hauptverfasser: Huang, Yuanqing, Chen, Yingping, Ma, D. Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1746
container_issue 6
container_start_page 1735
container_title IEEE journal of solid-state circuits
container_volume 59
creator Huang, Yuanqing
Chen, Yingping
Ma, D. Brian
description In order to mitigate reliability challenges on emerging wide-bandgap (WBG) gallium nitride (GaN) power devices, this article investigates a software-hardware codesign solution utilizing online device condition monitoring and machine-learning technologies, with an ultimate goal of achieving intelligent device self-health learning efficiently and effectively. Specifically, an on-die logarithm-based analog stochastic gradient descent (SGD) supervised learning engine is developed to train a GaN power circuit to establish and update its own device thermal model seamlessly through autonomously self-tested condition precursor r_{\text {DS}\_{}\text {ON}} . To remove the adverse temperature ( T_{J} ) impact on condition monitoring efficacy, a nonintrusive online T_{J} sensing scheme is introduced by evaluating the ambient temperature ( T_{A} ) and the instant power loss ( P_{\text {LOSS}} ) to accomplish a truly T_{J} -independent precursor measurement. To validate this research effort, a GaN-based switching power converter prototype was built. The controller and gate drivers are fabricated using a 180 nm high-voltage (HV) bipolar-CMOS-DMOS (BCD) process, with an active die area of 2.9 mm2. Operating at 3.3 MHz, the converter can support a wide range of V_{\text {IN}} from 5 to 40 V and deliver a maximum power of 9 W at 5-V V_{O} . The proposed on-die logarithm-based supervised learning engine and T_{J} -independent r_{\text {DS}\_{}\text {ON}} condition monitoring module occupy 0.89 mm2 silicon die area and consume up to 3.5 mW power. The design demonstrates a maximum prediction error of 2.77% over the temperature range from 0 °C to 120 °C.
doi_str_mv 10.1109/JSSC.2023.3330835
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10320386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10320386</ieee_id><sourcerecordid>10320386</sourcerecordid><originalsourceid>FETCH-LOGICAL-i176t-bbe4eaa6c2a9610c48e0387b94011d35b95540ba87c71ff4ca3f1297bfc8ff33</originalsourceid><addsrcrecordid>eNotjF1PwjAYhXuhiYj-ABMv-geG7dpt3SUB5CMgJFviJXnbvcWa0ZFuYLz3hzuiN-fkOXlyCHnibMQ5y19WRTEZxSwWIyEEUyK5IQPGuIrymLE7ct-2nz1KqfiA_Mw86Nr5A936vpDO4Y3umi8MdIoXZ5AWWNtogVB3H3TTeNc14aq_u57HHurmQIv5lBbnE4aLa7Gia4Tgrw74iparaOkrPGEfvqO7gOYc2ibQDUJ7Dnjs1wdya6Fu8fG_h6R8nZWTRbTezpeT8TpyPEu7SGuUCJCaGPKUMyMVMqEynUvGeSUSnSeJZBpUZjJurTQgLI_zTFujrBViSJ7_bh0i7k_BHSF87zkTcX-Til-uil8I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enabling Online GaN Power Device Self-Health Monitoring With Analog SGD Supervised Learning and TJ-Independent Precursor Measurement</title><source>IEL</source><creator>Huang, Yuanqing ; Chen, Yingping ; Ma, D. Brian</creator><creatorcontrib>Huang, Yuanqing ; Chen, Yingping ; Ma, D. Brian</creatorcontrib><description><![CDATA[In order to mitigate reliability challenges on emerging wide-bandgap (WBG) gallium nitride (GaN) power devices, this article investigates a software-hardware codesign solution utilizing online device condition monitoring and machine-learning technologies, with an ultimate goal of achieving intelligent device self-health learning efficiently and effectively. Specifically, an on-die logarithm-based analog stochastic gradient descent (SGD) supervised learning engine is developed to train a GaN power circuit to establish and update its own device thermal model seamlessly through autonomously self-tested condition precursor <inline-formula> <tex-math notation="LaTeX">r_{\text {DS}\_{}\text {ON}} </tex-math></inline-formula>. To remove the adverse temperature (<inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>) impact on condition monitoring efficacy, a nonintrusive online <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula> sensing scheme is introduced by evaluating the ambient temperature (<inline-formula> <tex-math notation="LaTeX">T_{A} </tex-math></inline-formula>) and the instant power loss (<inline-formula> <tex-math notation="LaTeX">P_{\text {LOSS}} </tex-math></inline-formula>) to accomplish a truly <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>-independent precursor measurement. To validate this research effort, a GaN-based switching power converter prototype was built. The controller and gate drivers are fabricated using a 180 nm high-voltage (HV) bipolar-CMOS-DMOS (BCD) process, with an active die area of 2.9 mm2. Operating at 3.3 MHz, the converter can support a wide range of <inline-formula> <tex-math notation="LaTeX">V_{\text {IN}} </tex-math></inline-formula> from 5 to 40 V and deliver a maximum power of 9 W at 5-V <inline-formula> <tex-math notation="LaTeX">V_{O} </tex-math></inline-formula>. The proposed on-die logarithm-based supervised learning engine and <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>-independent <inline-formula> <tex-math notation="LaTeX">r_{\text {DS}\_{}\text {ON}} </tex-math></inline-formula> condition monitoring module occupy 0.89 mm2 silicon die area and consume up to 3.5 mW power. The design demonstrates a maximum prediction error of 2.77% over the temperature range from 0 °C to 120 °C.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>DOI: 10.1109/JSSC.2023.3330835</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; Condition monitoring ; Dynamic ON-resistance ; Engines ; on-die supervised learning ; online TJ-independent condition monitoring ; power device self-health learning ; Sensors ; Supervised learning ; Temperature measurement ; Temperature sensors ; wide-bandgap (WBG) power device</subject><ispartof>IEEE journal of solid-state circuits, 2024-06, Vol.59 (6), p.1735-1746</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8687-9858 ; 0000-0002-4457-7157 ; 0000-0002-5897-9480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10320386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10320386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Yuanqing</creatorcontrib><creatorcontrib>Chen, Yingping</creatorcontrib><creatorcontrib>Ma, D. Brian</creatorcontrib><title>Enabling Online GaN Power Device Self-Health Monitoring With Analog SGD Supervised Learning and TJ-Independent Precursor Measurement</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[In order to mitigate reliability challenges on emerging wide-bandgap (WBG) gallium nitride (GaN) power devices, this article investigates a software-hardware codesign solution utilizing online device condition monitoring and machine-learning technologies, with an ultimate goal of achieving intelligent device self-health learning efficiently and effectively. Specifically, an on-die logarithm-based analog stochastic gradient descent (SGD) supervised learning engine is developed to train a GaN power circuit to establish and update its own device thermal model seamlessly through autonomously self-tested condition precursor <inline-formula> <tex-math notation="LaTeX">r_{\text {DS}\_{}\text {ON}} </tex-math></inline-formula>. To remove the adverse temperature (<inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>) impact on condition monitoring efficacy, a nonintrusive online <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula> sensing scheme is introduced by evaluating the ambient temperature (<inline-formula> <tex-math notation="LaTeX">T_{A} </tex-math></inline-formula>) and the instant power loss (<inline-formula> <tex-math notation="LaTeX">P_{\text {LOSS}} </tex-math></inline-formula>) to accomplish a truly <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>-independent precursor measurement. To validate this research effort, a GaN-based switching power converter prototype was built. The controller and gate drivers are fabricated using a 180 nm high-voltage (HV) bipolar-CMOS-DMOS (BCD) process, with an active die area of 2.9 mm2. Operating at 3.3 MHz, the converter can support a wide range of <inline-formula> <tex-math notation="LaTeX">V_{\text {IN}} </tex-math></inline-formula> from 5 to 40 V and deliver a maximum power of 9 W at 5-V <inline-formula> <tex-math notation="LaTeX">V_{O} </tex-math></inline-formula>. The proposed on-die logarithm-based supervised learning engine and <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>-independent <inline-formula> <tex-math notation="LaTeX">r_{\text {DS}\_{}\text {ON}} </tex-math></inline-formula> condition monitoring module occupy 0.89 mm2 silicon die area and consume up to 3.5 mW power. The design demonstrates a maximum prediction error of 2.77% over the temperature range from 0 °C to 120 °C.]]></description><subject>Aging</subject><subject>Condition monitoring</subject><subject>Dynamic ON-resistance</subject><subject>Engines</subject><subject>on-die supervised learning</subject><subject>online TJ-independent condition monitoring</subject><subject>power device self-health learning</subject><subject>Sensors</subject><subject>Supervised learning</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>wide-bandgap (WBG) power device</subject><issn>0018-9200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjF1PwjAYhXuhiYj-ABMv-geG7dpt3SUB5CMgJFviJXnbvcWa0ZFuYLz3hzuiN-fkOXlyCHnibMQ5y19WRTEZxSwWIyEEUyK5IQPGuIrymLE7ct-2nz1KqfiA_Mw86Nr5A936vpDO4Y3umi8MdIoXZ5AWWNtogVB3H3TTeNc14aq_u57HHurmQIv5lBbnE4aLa7Gia4Tgrw74iparaOkrPGEfvqO7gOYc2ibQDUJ7Dnjs1wdya6Fu8fG_h6R8nZWTRbTezpeT8TpyPEu7SGuUCJCaGPKUMyMVMqEynUvGeSUSnSeJZBpUZjJurTQgLI_zTFujrBViSJ7_bh0i7k_BHSF87zkTcX-Til-uil8I</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Huang, Yuanqing</creator><creator>Chen, Yingping</creator><creator>Ma, D. Brian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-8687-9858</orcidid><orcidid>https://orcid.org/0000-0002-4457-7157</orcidid><orcidid>https://orcid.org/0000-0002-5897-9480</orcidid></search><sort><creationdate>202406</creationdate><title>Enabling Online GaN Power Device Self-Health Monitoring With Analog SGD Supervised Learning and TJ-Independent Precursor Measurement</title><author>Huang, Yuanqing ; Chen, Yingping ; Ma, D. Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i176t-bbe4eaa6c2a9610c48e0387b94011d35b95540ba87c71ff4ca3f1297bfc8ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging</topic><topic>Condition monitoring</topic><topic>Dynamic ON-resistance</topic><topic>Engines</topic><topic>on-die supervised learning</topic><topic>online TJ-independent condition monitoring</topic><topic>power device self-health learning</topic><topic>Sensors</topic><topic>Supervised learning</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>wide-bandgap (WBG) power device</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yuanqing</creatorcontrib><creatorcontrib>Chen, Yingping</creatorcontrib><creatorcontrib>Ma, D. Brian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Yuanqing</au><au>Chen, Yingping</au><au>Ma, D. Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Online GaN Power Device Self-Health Monitoring With Analog SGD Supervised Learning and TJ-Independent Precursor Measurement</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2024-06</date><risdate>2024</risdate><volume>59</volume><issue>6</issue><spage>1735</spage><epage>1746</epage><pages>1735-1746</pages><issn>0018-9200</issn><coden>IJSCBC</coden><abstract><![CDATA[In order to mitigate reliability challenges on emerging wide-bandgap (WBG) gallium nitride (GaN) power devices, this article investigates a software-hardware codesign solution utilizing online device condition monitoring and machine-learning technologies, with an ultimate goal of achieving intelligent device self-health learning efficiently and effectively. Specifically, an on-die logarithm-based analog stochastic gradient descent (SGD) supervised learning engine is developed to train a GaN power circuit to establish and update its own device thermal model seamlessly through autonomously self-tested condition precursor <inline-formula> <tex-math notation="LaTeX">r_{\text {DS}\_{}\text {ON}} </tex-math></inline-formula>. To remove the adverse temperature (<inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>) impact on condition monitoring efficacy, a nonintrusive online <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula> sensing scheme is introduced by evaluating the ambient temperature (<inline-formula> <tex-math notation="LaTeX">T_{A} </tex-math></inline-formula>) and the instant power loss (<inline-formula> <tex-math notation="LaTeX">P_{\text {LOSS}} </tex-math></inline-formula>) to accomplish a truly <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>-independent precursor measurement. To validate this research effort, a GaN-based switching power converter prototype was built. The controller and gate drivers are fabricated using a 180 nm high-voltage (HV) bipolar-CMOS-DMOS (BCD) process, with an active die area of 2.9 mm2. Operating at 3.3 MHz, the converter can support a wide range of <inline-formula> <tex-math notation="LaTeX">V_{\text {IN}} </tex-math></inline-formula> from 5 to 40 V and deliver a maximum power of 9 W at 5-V <inline-formula> <tex-math notation="LaTeX">V_{O} </tex-math></inline-formula>. The proposed on-die logarithm-based supervised learning engine and <inline-formula> <tex-math notation="LaTeX">T_{J} </tex-math></inline-formula>-independent <inline-formula> <tex-math notation="LaTeX">r_{\text {DS}\_{}\text {ON}} </tex-math></inline-formula> condition monitoring module occupy 0.89 mm2 silicon die area and consume up to 3.5 mW power. The design demonstrates a maximum prediction error of 2.77% over the temperature range from 0 °C to 120 °C.]]></abstract><pub>IEEE</pub><doi>10.1109/JSSC.2023.3330835</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8687-9858</orcidid><orcidid>https://orcid.org/0000-0002-4457-7157</orcidid><orcidid>https://orcid.org/0000-0002-5897-9480</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2024-06, Vol.59 (6), p.1735-1746
issn 0018-9200
language eng
recordid cdi_ieee_primary_10320386
source IEL
subjects Aging
Condition monitoring
Dynamic ON-resistance
Engines
on-die supervised learning
online TJ-independent condition monitoring
power device self-health learning
Sensors
Supervised learning
Temperature measurement
Temperature sensors
wide-bandgap (WBG) power device
title Enabling Online GaN Power Device Self-Health Monitoring With Analog SGD Supervised Learning and TJ-Independent Precursor Measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T14%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Online%20GaN%20Power%20Device%20Self-Health%20Monitoring%20With%20Analog%20SGD%20Supervised%20Learning%20and%20TJ-Independent%20Precursor%20Measurement&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Huang,%20Yuanqing&rft.date=2024-06&rft.volume=59&rft.issue=6&rft.spage=1735&rft.epage=1746&rft.pages=1735-1746&rft.issn=0018-9200&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3330835&rft_dat=%3Cieee_RIE%3E10320386%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10320386&rfr_iscdi=true