Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning

Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-01, Vol.9 (1), p.311-318
Hauptverfasser: Dong, Qingwei, Zeng, Peng, Wan, Guangxi, He, Yunpeng, Dong, Xiaoting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 1
container_start_page 311
container_title IEEE robotics and automation letters
container_volume 9
creator Dong, Qingwei
Zeng, Peng
Wan, Guangxi
He, Yunpeng
Dong, Xiaoting
description Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical environment is often infeasible. With the development of increasingly realistic simulators, it has become feasible for industrial robots to acquire complex motion skills within simulated environments. Nonetheless, the "reality gap" frequently results in performance degradation when transferring policies trained in simulators to physical systems. In this letter, we treat the reality gap between a physical environment (target domain) and a simulated environment (source domain) as a Gaussian perturbation and utilize Kalman filtering to reduce the discrepancy between source and target domain data. We refine the source domain controller using target domain data to enhance the controller's adaptability to the target domain. The efficacy of the proposed method is demonstrated in reaching tasks and peg-in-hole tasks conducted on PR2 and UR5 robotic platforms.
doi_str_mv 10.1109/LRA.2023.3333661
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10319830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10319830</ieee_id><sourcerecordid>2893072680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-766209168452e9083ca1f713e7b6fd1129fd8c830156e5b20db7c50b58ba46df3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EElXpzsAQidnBH_UXW6koICJVastsOckZUqVJsdOB_x5X7dBb7ob37j39ELqnJKeUmKdiNcsZYTznaaSkV2jEuFKYKymvL-5bNIlxSwihgiluxAg9f7p257ps0bQDBPziItTZsgO8_umHbN3s8NDjFbg22wTXRQ8hK8CFrum-79CNd22EyXmP0dfidTN_x8Xy7WM-K3DFpmLAKZYRQ6WeCgaGaF456hXloErpa0qZ8bWuNE-dJIiSkbpUlSCl0KWbytrzMXo8_d2H_vcAcbDb_hC6FGmZNpwoJjVJKnJSVaGPMYC3-9DsXPizlNgjJJsg2SMke4aULA8nSwMAF3JOTarD_wGZVV_J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893072680</pqid></control><display><type>article</type><title>Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Qingwei ; Zeng, Peng ; Wan, Guangxi ; He, Yunpeng ; Dong, Xiaoting</creator><creatorcontrib>Dong, Qingwei ; Zeng, Peng ; Wan, Guangxi ; He, Yunpeng ; Dong, Xiaoting</creatorcontrib><description>Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical environment is often infeasible. With the development of increasingly realistic simulators, it has become feasible for industrial robots to acquire complex motion skills within simulated environments. Nonetheless, the "reality gap" frequently results in performance degradation when transferring policies trained in simulators to physical systems. In this letter, we treat the reality gap between a physical environment (target domain) and a simulated environment (source domain) as a Gaussian perturbation and utilize Kalman filtering to reduce the discrepancy between source and target domain data. We refine the source domain controller using target domain data to enhance the controller's adaptability to the target domain. The efficacy of the proposed method is demonstrated in reaching tasks and peg-in-hole tasks conducted on PR2 and UR5 robotic platforms.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3333661</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Algorithm design and analysis ; Algorithms ; Constraint modelling ; Controllers ; Deep reinforcement learning ; Heuristic algorithms ; Industrial robots ; Kalman filter ; Kalman filters ; Machine learning ; Performance degradation ; reality gap ; Reinforcement learning ; Robot dynamics ; sim-to-real ; Simulation ; Simulators ; Task analysis ; Training ; Trajectory ; Transfer learning</subject><ispartof>IEEE robotics and automation letters, 2024-01, Vol.9 (1), p.311-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-766209168452e9083ca1f713e7b6fd1129fd8c830156e5b20db7c50b58ba46df3</cites><orcidid>0000-0001-7863-3260 ; 0000-0003-4456-6236 ; 0000-0003-4835-3713 ; 0000-0002-6783-8647 ; 0000-0001-9672-7615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10319830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10319830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Qingwei</creatorcontrib><creatorcontrib>Zeng, Peng</creatorcontrib><creatorcontrib>Wan, Guangxi</creatorcontrib><creatorcontrib>He, Yunpeng</creatorcontrib><creatorcontrib>Dong, Xiaoting</creatorcontrib><title>Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical environment is often infeasible. With the development of increasingly realistic simulators, it has become feasible for industrial robots to acquire complex motion skills within simulated environments. Nonetheless, the "reality gap" frequently results in performance degradation when transferring policies trained in simulators to physical systems. In this letter, we treat the reality gap between a physical environment (target domain) and a simulated environment (source domain) as a Gaussian perturbation and utilize Kalman filtering to reduce the discrepancy between source and target domain data. We refine the source domain controller using target domain data to enhance the controller's adaptability to the target domain. The efficacy of the proposed method is demonstrated in reaching tasks and peg-in-hole tasks conducted on PR2 and UR5 robotic platforms.</description><subject>Adaptation models</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Constraint modelling</subject><subject>Controllers</subject><subject>Deep reinforcement learning</subject><subject>Heuristic algorithms</subject><subject>Industrial robots</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Performance degradation</subject><subject>reality gap</subject><subject>Reinforcement learning</subject><subject>Robot dynamics</subject><subject>sim-to-real</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Task analysis</subject><subject>Training</subject><subject>Trajectory</subject><subject>Transfer learning</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EElXpzsAQidnBH_UXW6koICJVastsOckZUqVJsdOB_x5X7dBb7ob37j39ELqnJKeUmKdiNcsZYTznaaSkV2jEuFKYKymvL-5bNIlxSwihgiluxAg9f7p257ps0bQDBPziItTZsgO8_umHbN3s8NDjFbg22wTXRQ8hK8CFrum-79CNd22EyXmP0dfidTN_x8Xy7WM-K3DFpmLAKZYRQ6WeCgaGaF456hXloErpa0qZ8bWuNE-dJIiSkbpUlSCl0KWbytrzMXo8_d2H_vcAcbDb_hC6FGmZNpwoJjVJKnJSVaGPMYC3-9DsXPizlNgjJJsg2SMke4aULA8nSwMAF3JOTarD_wGZVV_J</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Dong, Qingwei</creator><creator>Zeng, Peng</creator><creator>Wan, Guangxi</creator><creator>He, Yunpeng</creator><creator>Dong, Xiaoting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7863-3260</orcidid><orcidid>https://orcid.org/0000-0003-4456-6236</orcidid><orcidid>https://orcid.org/0000-0003-4835-3713</orcidid><orcidid>https://orcid.org/0000-0002-6783-8647</orcidid><orcidid>https://orcid.org/0000-0001-9672-7615</orcidid></search><sort><creationdate>202401</creationdate><title>Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning</title><author>Dong, Qingwei ; Zeng, Peng ; Wan, Guangxi ; He, Yunpeng ; Dong, Xiaoting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-766209168452e9083ca1f713e7b6fd1129fd8c830156e5b20db7c50b58ba46df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Constraint modelling</topic><topic>Controllers</topic><topic>Deep reinforcement learning</topic><topic>Heuristic algorithms</topic><topic>Industrial robots</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Performance degradation</topic><topic>reality gap</topic><topic>Reinforcement learning</topic><topic>Robot dynamics</topic><topic>sim-to-real</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Task analysis</topic><topic>Training</topic><topic>Trajectory</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Qingwei</creatorcontrib><creatorcontrib>Zeng, Peng</creatorcontrib><creatorcontrib>Wan, Guangxi</creatorcontrib><creatorcontrib>He, Yunpeng</creatorcontrib><creatorcontrib>Dong, Xiaoting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Qingwei</au><au>Zeng, Peng</au><au>Wan, Guangxi</au><au>He, Yunpeng</au><au>Dong, Xiaoting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical environment is often infeasible. With the development of increasingly realistic simulators, it has become feasible for industrial robots to acquire complex motion skills within simulated environments. Nonetheless, the "reality gap" frequently results in performance degradation when transferring policies trained in simulators to physical systems. In this letter, we treat the reality gap between a physical environment (target domain) and a simulated environment (source domain) as a Gaussian perturbation and utilize Kalman filtering to reduce the discrepancy between source and target domain data. We refine the source domain controller using target domain data to enhance the controller's adaptability to the target domain. The efficacy of the proposed method is demonstrated in reaching tasks and peg-in-hole tasks conducted on PR2 and UR5 robotic platforms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3333661</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7863-3260</orcidid><orcidid>https://orcid.org/0000-0003-4456-6236</orcidid><orcidid>https://orcid.org/0000-0003-4835-3713</orcidid><orcidid>https://orcid.org/0000-0002-6783-8647</orcidid><orcidid>https://orcid.org/0000-0001-9672-7615</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-01, Vol.9 (1), p.311-318
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_10319830
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithm design and analysis
Algorithms
Constraint modelling
Controllers
Deep reinforcement learning
Heuristic algorithms
Industrial robots
Kalman filter
Kalman filters
Machine learning
Performance degradation
reality gap
Reinforcement learning
Robot dynamics
sim-to-real
Simulation
Simulators
Task analysis
Training
Trajectory
Transfer learning
title Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kalman%20Filter-Based%20One-Shot%20Sim-to-Real%20Transfer%20Learning&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Dong,%20Qingwei&rft.date=2024-01&rft.volume=9&rft.issue=1&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3333661&rft_dat=%3Cproquest_RIE%3E2893072680%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893072680&rft_id=info:pmid/&rft_ieee_id=10319830&rfr_iscdi=true