Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning
Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-01, Vol.9 (1), p.311-318 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 1 |
container_start_page | 311 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Dong, Qingwei Zeng, Peng Wan, Guangxi He, Yunpeng Dong, Xiaoting |
description | Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical environment is often infeasible. With the development of increasingly realistic simulators, it has become feasible for industrial robots to acquire complex motion skills within simulated environments. Nonetheless, the "reality gap" frequently results in performance degradation when transferring policies trained in simulators to physical systems. In this letter, we treat the reality gap between a physical environment (target domain) and a simulated environment (source domain) as a Gaussian perturbation and utilize Kalman filtering to reduce the discrepancy between source and target domain data. We refine the source domain controller using target domain data to enhance the controller's adaptability to the target domain. The efficacy of the proposed method is demonstrated in reaching tasks and peg-in-hole tasks conducted on PR2 and UR5 robotic platforms. |
doi_str_mv | 10.1109/LRA.2023.3333661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10319830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10319830</ieee_id><sourcerecordid>2893072680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-766209168452e9083ca1f713e7b6fd1129fd8c830156e5b20db7c50b58ba46df3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EElXpzsAQidnBH_UXW6koICJVastsOckZUqVJsdOB_x5X7dBb7ob37j39ELqnJKeUmKdiNcsZYTznaaSkV2jEuFKYKymvL-5bNIlxSwihgiluxAg9f7p257ps0bQDBPziItTZsgO8_umHbN3s8NDjFbg22wTXRQ8hK8CFrum-79CNd22EyXmP0dfidTN_x8Xy7WM-K3DFpmLAKZYRQ6WeCgaGaF456hXloErpa0qZ8bWuNE-dJIiSkbpUlSCl0KWbytrzMXo8_d2H_vcAcbDb_hC6FGmZNpwoJjVJKnJSVaGPMYC3-9DsXPizlNgjJJsg2SMke4aULA8nSwMAF3JOTarD_wGZVV_J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893072680</pqid></control><display><type>article</type><title>Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Qingwei ; Zeng, Peng ; Wan, Guangxi ; He, Yunpeng ; Dong, Xiaoting</creator><creatorcontrib>Dong, Qingwei ; Zeng, Peng ; Wan, Guangxi ; He, Yunpeng ; Dong, Xiaoting</creatorcontrib><description>Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical environment is often infeasible. With the development of increasingly realistic simulators, it has become feasible for industrial robots to acquire complex motion skills within simulated environments. Nonetheless, the "reality gap" frequently results in performance degradation when transferring policies trained in simulators to physical systems. In this letter, we treat the reality gap between a physical environment (target domain) and a simulated environment (source domain) as a Gaussian perturbation and utilize Kalman filtering to reduce the discrepancy between source and target domain data. We refine the source domain controller using target domain data to enhance the controller's adaptability to the target domain. The efficacy of the proposed method is demonstrated in reaching tasks and peg-in-hole tasks conducted on PR2 and UR5 robotic platforms.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3333661</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Algorithm design and analysis ; Algorithms ; Constraint modelling ; Controllers ; Deep reinforcement learning ; Heuristic algorithms ; Industrial robots ; Kalman filter ; Kalman filters ; Machine learning ; Performance degradation ; reality gap ; Reinforcement learning ; Robot dynamics ; sim-to-real ; Simulation ; Simulators ; Task analysis ; Training ; Trajectory ; Transfer learning</subject><ispartof>IEEE robotics and automation letters, 2024-01, Vol.9 (1), p.311-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-766209168452e9083ca1f713e7b6fd1129fd8c830156e5b20db7c50b58ba46df3</cites><orcidid>0000-0001-7863-3260 ; 0000-0003-4456-6236 ; 0000-0003-4835-3713 ; 0000-0002-6783-8647 ; 0000-0001-9672-7615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10319830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10319830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Qingwei</creatorcontrib><creatorcontrib>Zeng, Peng</creatorcontrib><creatorcontrib>Wan, Guangxi</creatorcontrib><creatorcontrib>He, Yunpeng</creatorcontrib><creatorcontrib>Dong, Xiaoting</creatorcontrib><title>Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical environment is often infeasible. With the development of increasingly realistic simulators, it has become feasible for industrial robots to acquire complex motion skills within simulated environments. Nonetheless, the "reality gap" frequently results in performance degradation when transferring policies trained in simulators to physical systems. In this letter, we treat the reality gap between a physical environment (target domain) and a simulated environment (source domain) as a Gaussian perturbation and utilize Kalman filtering to reduce the discrepancy between source and target domain data. We refine the source domain controller using target domain data to enhance the controller's adaptability to the target domain. The efficacy of the proposed method is demonstrated in reaching tasks and peg-in-hole tasks conducted on PR2 and UR5 robotic platforms.</description><subject>Adaptation models</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Constraint modelling</subject><subject>Controllers</subject><subject>Deep reinforcement learning</subject><subject>Heuristic algorithms</subject><subject>Industrial robots</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Performance degradation</subject><subject>reality gap</subject><subject>Reinforcement learning</subject><subject>Robot dynamics</subject><subject>sim-to-real</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Task analysis</subject><subject>Training</subject><subject>Trajectory</subject><subject>Transfer learning</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EElXpzsAQidnBH_UXW6koICJVastsOckZUqVJsdOB_x5X7dBb7ob37j39ELqnJKeUmKdiNcsZYTznaaSkV2jEuFKYKymvL-5bNIlxSwihgiluxAg9f7p257ps0bQDBPziItTZsgO8_umHbN3s8NDjFbg22wTXRQ8hK8CFrum-79CNd22EyXmP0dfidTN_x8Xy7WM-K3DFpmLAKZYRQ6WeCgaGaF456hXloErpa0qZ8bWuNE-dJIiSkbpUlSCl0KWbytrzMXo8_d2H_vcAcbDb_hC6FGmZNpwoJjVJKnJSVaGPMYC3-9DsXPizlNgjJJsg2SMke4aULA8nSwMAF3JOTarD_wGZVV_J</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Dong, Qingwei</creator><creator>Zeng, Peng</creator><creator>Wan, Guangxi</creator><creator>He, Yunpeng</creator><creator>Dong, Xiaoting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7863-3260</orcidid><orcidid>https://orcid.org/0000-0003-4456-6236</orcidid><orcidid>https://orcid.org/0000-0003-4835-3713</orcidid><orcidid>https://orcid.org/0000-0002-6783-8647</orcidid><orcidid>https://orcid.org/0000-0001-9672-7615</orcidid></search><sort><creationdate>202401</creationdate><title>Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning</title><author>Dong, Qingwei ; Zeng, Peng ; Wan, Guangxi ; He, Yunpeng ; Dong, Xiaoting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-766209168452e9083ca1f713e7b6fd1129fd8c830156e5b20db7c50b58ba46df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Constraint modelling</topic><topic>Controllers</topic><topic>Deep reinforcement learning</topic><topic>Heuristic algorithms</topic><topic>Industrial robots</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Performance degradation</topic><topic>reality gap</topic><topic>Reinforcement learning</topic><topic>Robot dynamics</topic><topic>sim-to-real</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Task analysis</topic><topic>Training</topic><topic>Trajectory</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Qingwei</creatorcontrib><creatorcontrib>Zeng, Peng</creatorcontrib><creatorcontrib>Wan, Guangxi</creatorcontrib><creatorcontrib>He, Yunpeng</creatorcontrib><creatorcontrib>Dong, Xiaoting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Qingwei</au><au>Zeng, Peng</au><au>Wan, Guangxi</au><au>He, Yunpeng</au><au>Dong, Xiaoting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Deep reinforcement learning algorithms offer a promising method for industrial robots to tackle unstructured and complex scenarios that are difficult to model. However, due to constraints related to equipment lifespan and safety requirements, acquiring a number of samples directly from the physical environment is often infeasible. With the development of increasingly realistic simulators, it has become feasible for industrial robots to acquire complex motion skills within simulated environments. Nonetheless, the "reality gap" frequently results in performance degradation when transferring policies trained in simulators to physical systems. In this letter, we treat the reality gap between a physical environment (target domain) and a simulated environment (source domain) as a Gaussian perturbation and utilize Kalman filtering to reduce the discrepancy between source and target domain data. We refine the source domain controller using target domain data to enhance the controller's adaptability to the target domain. The efficacy of the proposed method is demonstrated in reaching tasks and peg-in-hole tasks conducted on PR2 and UR5 robotic platforms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3333661</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7863-3260</orcidid><orcidid>https://orcid.org/0000-0003-4456-6236</orcidid><orcidid>https://orcid.org/0000-0003-4835-3713</orcidid><orcidid>https://orcid.org/0000-0002-6783-8647</orcidid><orcidid>https://orcid.org/0000-0001-9672-7615</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-01, Vol.9 (1), p.311-318 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_10319830 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Algorithm design and analysis Algorithms Constraint modelling Controllers Deep reinforcement learning Heuristic algorithms Industrial robots Kalman filter Kalman filters Machine learning Performance degradation reality gap Reinforcement learning Robot dynamics sim-to-real Simulation Simulators Task analysis Training Trajectory Transfer learning |
title | Kalman Filter-Based One-Shot Sim-to-Real Transfer Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kalman%20Filter-Based%20One-Shot%20Sim-to-Real%20Transfer%20Learning&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Dong,%20Qingwei&rft.date=2024-01&rft.volume=9&rft.issue=1&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3333661&rft_dat=%3Cproquest_RIE%3E2893072680%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893072680&rft_id=info:pmid/&rft_ieee_id=10319830&rfr_iscdi=true |