DMEF-Net: Lightweight Infrared Dim Small Target Detection Network for Limited Samples
Intractable sparse feature extraction, overweight model size, and limited training samples are currently bewildering in infrared dim small target detection, which is not adequately addressed by current state-of-the-art (SOTA) methods. Here, to synchronously address these issues, a dense multilevel f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Ma, Tianlei Yang, Zhen Song, Yi-Fan Liang, Jing Wang, Heshan |
description | Intractable sparse feature extraction, overweight model size, and limited training samples are currently bewildering in infrared dim small target detection, which is not adequately addressed by current state-of-the-art (SOTA) methods. Here, to synchronously address these issues, a dense multilevel feature extraction and fusion network (DMEF-net) is designed, mainly consisting of two modules: target context and Gaussian saliency feature extraction (TCGS) module and multilevel dense feature fusion structure (MLDF). Inspired by the physical thermal diffusion model and the human visual mechanism for small-scale targets, Gaussian salience features and local context features are introduced into the target feature expression through the designed TCGS module to solve the sparse feature extraction problem. Then, to solve the overweight model size problem, a novel MLDF module is designed to incorporate the feature reuse mechanism into our model, thereby significantly reducing the number of trainable parameters. Finally, in the training procedure, an efficient saliency labeling strategy is proposed to jointly supervise the model training in both Euclidean and Gaussian spaces, ultimately enhancing the model's ability to explore the target features and alleviate performance deterioration when the training samples are limited. Extensive experiments on several large-scale open datasets, including TDSATUA and MTDUCB, prove that the proposed DMEF-net outperforms other SOTA methods by 8% in accuracy and has 4800% less model size. |
doi_str_mv | 10.1109/TGRS.2023.3333378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10319730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10319730</ieee_id><sourcerecordid>2895009262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-a2507ae4470b62ed39ef0d8216641416f5a6dfbcc7f63bff506bfa324cc5f5003</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnvpq23sm-HFQFt12HtD2Zne06k4zhvzdluzAXJxx43nM4D0L3lIwoJdnTav65HDHC-Ij3L0kv0IDGcRoRKcQlGhCayYilGbtGN85tCaEipskArSdv01n0Dv4Z5_Xmyx-hr3ixM1ZbqPCkbvGy1U2DV9puwOMJeCh93e1wCB07-41NZ0O2rX3Al7rdN-Bu0ZXRjYO78z9E69l0NX6N8o_5YvySRyXLhI80i0miQYiEFJJBxTMwpEoZlVJQQaWJtaxMUZaJkbwwJiayMJozUZZxaAgfosfT3L3tfg7gvNp2B7sLK1W4NRAZkyxQ9ESVtnPOglF7W7fa_ipKVG9P9fZUb0-d7YXMwylTA8A_ntMs4YT_AeObaq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895009262</pqid></control><display><type>article</type><title>DMEF-Net: Lightweight Infrared Dim Small Target Detection Network for Limited Samples</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Tianlei ; Yang, Zhen ; Song, Yi-Fan ; Liang, Jing ; Wang, Heshan</creator><creatorcontrib>Ma, Tianlei ; Yang, Zhen ; Song, Yi-Fan ; Liang, Jing ; Wang, Heshan</creatorcontrib><description>Intractable sparse feature extraction, overweight model size, and limited training samples are currently bewildering in infrared dim small target detection, which is not adequately addressed by current state-of-the-art (SOTA) methods. Here, to synchronously address these issues, a dense multilevel feature extraction and fusion network (DMEF-net) is designed, mainly consisting of two modules: target context and Gaussian saliency feature extraction (TCGS) module and multilevel dense feature fusion structure (MLDF). Inspired by the physical thermal diffusion model and the human visual mechanism for small-scale targets, Gaussian salience features and local context features are introduced into the target feature expression through the designed TCGS module to solve the sparse feature extraction problem. Then, to solve the overweight model size problem, a novel MLDF module is designed to incorporate the feature reuse mechanism into our model, thereby significantly reducing the number of trainable parameters. Finally, in the training procedure, an efficient saliency labeling strategy is proposed to jointly supervise the model training in both Euclidean and Gaussian spaces, ultimately enhancing the model's ability to explore the target features and alleviate performance deterioration when the training samples are limited. Extensive experiments on several large-scale open datasets, including TDSATUA and MTDUCB, prove that the proposed DMEF-net outperforms other SOTA methods by 8% in accuracy and has 4800% less model size.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3333378</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Body weight ; Clutter ; Context ; Deep learning ; Detection ; DMEF-net ; Feature extraction ; infrared (IR) small target ; Labeling ; limited samples detection ; MLDF structure ; Modules ; Object detection ; Overweight ; Performance degradation ; Salience ; Target detection ; TCGS module ; Thermal diffusion ; Training ; Training data</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-a2507ae4470b62ed39ef0d8216641416f5a6dfbcc7f63bff506bfa324cc5f5003</citedby><cites>FETCH-LOGICAL-c294t-a2507ae4470b62ed39ef0d8216641416f5a6dfbcc7f63bff506bfa324cc5f5003</cites><orcidid>0000-0001-7967-5606 ; 0000-0003-0811-0223 ; 0000-0001-7632-5475 ; 0000-0003-2414-8926 ; 0000-0002-5882-6126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10319730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10319730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Tianlei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Song, Yi-Fan</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Wang, Heshan</creatorcontrib><title>DMEF-Net: Lightweight Infrared Dim Small Target Detection Network for Limited Samples</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Intractable sparse feature extraction, overweight model size, and limited training samples are currently bewildering in infrared dim small target detection, which is not adequately addressed by current state-of-the-art (SOTA) methods. Here, to synchronously address these issues, a dense multilevel feature extraction and fusion network (DMEF-net) is designed, mainly consisting of two modules: target context and Gaussian saliency feature extraction (TCGS) module and multilevel dense feature fusion structure (MLDF). Inspired by the physical thermal diffusion model and the human visual mechanism for small-scale targets, Gaussian salience features and local context features are introduced into the target feature expression through the designed TCGS module to solve the sparse feature extraction problem. Then, to solve the overweight model size problem, a novel MLDF module is designed to incorporate the feature reuse mechanism into our model, thereby significantly reducing the number of trainable parameters. Finally, in the training procedure, an efficient saliency labeling strategy is proposed to jointly supervise the model training in both Euclidean and Gaussian spaces, ultimately enhancing the model's ability to explore the target features and alleviate performance deterioration when the training samples are limited. Extensive experiments on several large-scale open datasets, including TDSATUA and MTDUCB, prove that the proposed DMEF-net outperforms other SOTA methods by 8% in accuracy and has 4800% less model size.</description><subject>Body weight</subject><subject>Clutter</subject><subject>Context</subject><subject>Deep learning</subject><subject>Detection</subject><subject>DMEF-net</subject><subject>Feature extraction</subject><subject>infrared (IR) small target</subject><subject>Labeling</subject><subject>limited samples detection</subject><subject>MLDF structure</subject><subject>Modules</subject><subject>Object detection</subject><subject>Overweight</subject><subject>Performance degradation</subject><subject>Salience</subject><subject>Target detection</subject><subject>TCGS module</subject><subject>Thermal diffusion</subject><subject>Training</subject><subject>Training data</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnvpq23sm-HFQFt12HtD2Zne06k4zhvzdluzAXJxx43nM4D0L3lIwoJdnTav65HDHC-Ij3L0kv0IDGcRoRKcQlGhCayYilGbtGN85tCaEipskArSdv01n0Dv4Z5_Xmyx-hr3ixM1ZbqPCkbvGy1U2DV9puwOMJeCh93e1wCB07-41NZ0O2rX3Al7rdN-Bu0ZXRjYO78z9E69l0NX6N8o_5YvySRyXLhI80i0miQYiEFJJBxTMwpEoZlVJQQaWJtaxMUZaJkbwwJiayMJozUZZxaAgfosfT3L3tfg7gvNp2B7sLK1W4NRAZkyxQ9ESVtnPOglF7W7fa_ipKVG9P9fZUb0-d7YXMwylTA8A_ntMs4YT_AeObaq0</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ma, Tianlei</creator><creator>Yang, Zhen</creator><creator>Song, Yi-Fan</creator><creator>Liang, Jing</creator><creator>Wang, Heshan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7967-5606</orcidid><orcidid>https://orcid.org/0000-0003-0811-0223</orcidid><orcidid>https://orcid.org/0000-0001-7632-5475</orcidid><orcidid>https://orcid.org/0000-0003-2414-8926</orcidid><orcidid>https://orcid.org/0000-0002-5882-6126</orcidid></search><sort><creationdate>2023</creationdate><title>DMEF-Net: Lightweight Infrared Dim Small Target Detection Network for Limited Samples</title><author>Ma, Tianlei ; Yang, Zhen ; Song, Yi-Fan ; Liang, Jing ; Wang, Heshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-a2507ae4470b62ed39ef0d8216641416f5a6dfbcc7f63bff506bfa324cc5f5003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Body weight</topic><topic>Clutter</topic><topic>Context</topic><topic>Deep learning</topic><topic>Detection</topic><topic>DMEF-net</topic><topic>Feature extraction</topic><topic>infrared (IR) small target</topic><topic>Labeling</topic><topic>limited samples detection</topic><topic>MLDF structure</topic><topic>Modules</topic><topic>Object detection</topic><topic>Overweight</topic><topic>Performance degradation</topic><topic>Salience</topic><topic>Target detection</topic><topic>TCGS module</topic><topic>Thermal diffusion</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Tianlei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Song, Yi-Fan</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Wang, Heshan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Tianlei</au><au>Yang, Zhen</au><au>Song, Yi-Fan</au><au>Liang, Jing</au><au>Wang, Heshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DMEF-Net: Lightweight Infrared Dim Small Target Detection Network for Limited Samples</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Intractable sparse feature extraction, overweight model size, and limited training samples are currently bewildering in infrared dim small target detection, which is not adequately addressed by current state-of-the-art (SOTA) methods. Here, to synchronously address these issues, a dense multilevel feature extraction and fusion network (DMEF-net) is designed, mainly consisting of two modules: target context and Gaussian saliency feature extraction (TCGS) module and multilevel dense feature fusion structure (MLDF). Inspired by the physical thermal diffusion model and the human visual mechanism for small-scale targets, Gaussian salience features and local context features are introduced into the target feature expression through the designed TCGS module to solve the sparse feature extraction problem. Then, to solve the overweight model size problem, a novel MLDF module is designed to incorporate the feature reuse mechanism into our model, thereby significantly reducing the number of trainable parameters. Finally, in the training procedure, an efficient saliency labeling strategy is proposed to jointly supervise the model training in both Euclidean and Gaussian spaces, ultimately enhancing the model's ability to explore the target features and alleviate performance deterioration when the training samples are limited. Extensive experiments on several large-scale open datasets, including TDSATUA and MTDUCB, prove that the proposed DMEF-net outperforms other SOTA methods by 8% in accuracy and has 4800% less model size.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3333378</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7967-5606</orcidid><orcidid>https://orcid.org/0000-0003-0811-0223</orcidid><orcidid>https://orcid.org/0000-0001-7632-5475</orcidid><orcidid>https://orcid.org/0000-0003-2414-8926</orcidid><orcidid>https://orcid.org/0000-0002-5882-6126</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-15 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10319730 |
source | IEEE Electronic Library (IEL) |
subjects | Body weight Clutter Context Deep learning Detection DMEF-net Feature extraction infrared (IR) small target Labeling limited samples detection MLDF structure Modules Object detection Overweight Performance degradation Salience Target detection TCGS module Thermal diffusion Training Training data |
title | DMEF-Net: Lightweight Infrared Dim Small Target Detection Network for Limited Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DMEF-Net:%20Lightweight%20Infrared%20Dim%20Small%20Target%20Detection%20Network%20for%20Limited%20Samples&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Ma,%20Tianlei&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3333378&rft_dat=%3Cproquest_RIE%3E2895009262%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895009262&rft_id=info:pmid/&rft_ieee_id=10319730&rfr_iscdi=true |