YOLOAL: Focusing on the Object Location for Detection on Drone Imagery

Object detection in drone-captured scenarios, which can be considered as a task of detecting dense small objects, is still a challenge. Drones navigate at different altitudes, causing significant changes in the size of the detected objects and posing a challenge to the model. Additionally, it is nec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.128886-128897
Hauptverfasser: Chen, Xinting, Yang, Wenzhu, Zeng, Shuang, Geng, Lei, Jiao, Yanyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128897
container_issue
container_start_page 128886
container_title IEEE access
container_volume 11
creator Chen, Xinting
Yang, Wenzhu
Zeng, Shuang
Geng, Lei
Jiao, Yanyan
description Object detection in drone-captured scenarios, which can be considered as a task of detecting dense small objects, is still a challenge. Drones navigate at different altitudes, causing significant changes in the size of the detected objects and posing a challenge to the model. Additionally, it is necessary to improve the ability of the object detection model to rapidly detect small dense objects. To address these issues, we propose YOLOAL, a model that emphasizes the location information of the objects. It incorporates a new attention mechanism called the Convolution and Coordinate Attention Module (CCAM) into its design. This mechanism performs better than traditional ones in dense small object scenes because it adds coordinates that help identify attention regions in such scenarios. Furthermore, our model uses a new loss function combined with the Efficient IoU (EIoU) and Alpha-IoU methods that achieve better results than the traditional approaches. The proposed model achieved state-of-the-art performance on the VisDrone and DOTA datasets. YOLOAL reaches an AP50 (average accuracy when Intersection over Union threshold is 0.5) of 63.6% and an mAP (average of 10 IoU thresholds, ranging from 0.5 to 0.95) of 40.8% at a real-time speed of 0.27 seconds on the VisDrone dataset, and the mAP on the DOTA dataset even reaches 39% on an NVIDIA A4000.
doi_str_mv 10.1109/ACCESS.2023.3332815
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10318136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318136</ieee_id><doaj_id>oai_doaj_org_article_44b1de9ba142428780b00256600f599e</doaj_id><sourcerecordid>2892376528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6e576e59617a05f357468141ebcd8e6a8a907e3ef312cbe8523dbfd09dbe46fd3</originalsourceid><addsrcrecordid>eNpNUE1rwzAMDWODla6_YDsEdk5nW7Fj71b6sRUCOXQ77GScROkS2rhz0kP__dyljBoZSQ-9J_GC4JGSKaVEvczm8-VmM2WEwRQAmKT8JhgxKlQEHMTtVX0fTLquIf5JD_FkFKy-sjSbpa_hyhbHrm63oW3D_hvDLG-w6MPUFqavPVZZFy6w99i587FwtsVwvTdbdKeH4K4yuw4nlzwOPlfLj_l7lGZv6_ksjQrgqo8E8sR_JWhiCK-AJ7GQNKaYF6VEYaRRJEHACigrcpScQZlXJVFljrGoShgH60G3tKbRB1fvjTtpa2r9B1i31cb1dbFDHcc5LVHlhsYsZjKRJCeEcSEIqbhS6LWeB62Dsz9H7Hrd2KNr_fmaScUgEZxJPwXDVOFs1zms_rdSos_-68F_ffZfX_z3rKeBVSPiFQOopCDgF8FKfos</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892376528</pqid></control><display><type>article</type><title>YOLOAL: Focusing on the Object Location for Detection on Drone Imagery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Xinting ; Yang, Wenzhu ; Zeng, Shuang ; Geng, Lei ; Jiao, Yanyan</creator><creatorcontrib>Chen, Xinting ; Yang, Wenzhu ; Zeng, Shuang ; Geng, Lei ; Jiao, Yanyan</creatorcontrib><description>Object detection in drone-captured scenarios, which can be considered as a task of detecting dense small objects, is still a challenge. Drones navigate at different altitudes, causing significant changes in the size of the detected objects and posing a challenge to the model. Additionally, it is necessary to improve the ability of the object detection model to rapidly detect small dense objects. To address these issues, we propose YOLOAL, a model that emphasizes the location information of the objects. It incorporates a new attention mechanism called the Convolution and Coordinate Attention Module (CCAM) into its design. This mechanism performs better than traditional ones in dense small object scenes because it adds coordinates that help identify attention regions in such scenarios. Furthermore, our model uses a new loss function combined with the Efficient IoU (EIoU) and Alpha-IoU methods that achieve better results than the traditional approaches. The proposed model achieved state-of-the-art performance on the VisDrone and DOTA datasets. YOLOAL reaches an AP50 (average accuracy when Intersection over Union threshold is 0.5) of 63.6% and an mAP (average of 10 IoU thresholds, ranging from 0.5 to 0.95) of 40.8% at a real-time speed of 0.27 seconds on the VisDrone dataset, and the mAP on the DOTA dataset even reaches 39% on an NVIDIA A4000.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3332815</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>attention mechanism ; Convolutional neural networks ; Datasets ; Drone ; Drones ; Feature extraction ; Focusing ; Image coding ; loss function ; Object recognition ; Real-time systems ; small dense objects detection</subject><ispartof>IEEE access, 2023, Vol.11, p.128886-128897</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-6e576e59617a05f357468141ebcd8e6a8a907e3ef312cbe8523dbfd09dbe46fd3</cites><orcidid>0009-0007-3046-6249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Chen, Xinting</creatorcontrib><creatorcontrib>Yang, Wenzhu</creatorcontrib><creatorcontrib>Zeng, Shuang</creatorcontrib><creatorcontrib>Geng, Lei</creatorcontrib><creatorcontrib>Jiao, Yanyan</creatorcontrib><title>YOLOAL: Focusing on the Object Location for Detection on Drone Imagery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Object detection in drone-captured scenarios, which can be considered as a task of detecting dense small objects, is still a challenge. Drones navigate at different altitudes, causing significant changes in the size of the detected objects and posing a challenge to the model. Additionally, it is necessary to improve the ability of the object detection model to rapidly detect small dense objects. To address these issues, we propose YOLOAL, a model that emphasizes the location information of the objects. It incorporates a new attention mechanism called the Convolution and Coordinate Attention Module (CCAM) into its design. This mechanism performs better than traditional ones in dense small object scenes because it adds coordinates that help identify attention regions in such scenarios. Furthermore, our model uses a new loss function combined with the Efficient IoU (EIoU) and Alpha-IoU methods that achieve better results than the traditional approaches. The proposed model achieved state-of-the-art performance on the VisDrone and DOTA datasets. YOLOAL reaches an AP50 (average accuracy when Intersection over Union threshold is 0.5) of 63.6% and an mAP (average of 10 IoU thresholds, ranging from 0.5 to 0.95) of 40.8% at a real-time speed of 0.27 seconds on the VisDrone dataset, and the mAP on the DOTA dataset even reaches 39% on an NVIDIA A4000.</description><subject>attention mechanism</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Drone</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>Focusing</subject><subject>Image coding</subject><subject>loss function</subject><subject>Object recognition</subject><subject>Real-time systems</subject><subject>small dense objects detection</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwzAMDWODla6_YDsEdk5nW7Fj71b6sRUCOXQ77GScROkS2rhz0kP__dyljBoZSQ-9J_GC4JGSKaVEvczm8-VmM2WEwRQAmKT8JhgxKlQEHMTtVX0fTLquIf5JD_FkFKy-sjSbpa_hyhbHrm63oW3D_hvDLG-w6MPUFqavPVZZFy6w99i587FwtsVwvTdbdKeH4K4yuw4nlzwOPlfLj_l7lGZv6_ksjQrgqo8E8sR_JWhiCK-AJ7GQNKaYF6VEYaRRJEHACigrcpScQZlXJVFljrGoShgH60G3tKbRB1fvjTtpa2r9B1i31cb1dbFDHcc5LVHlhsYsZjKRJCeEcSEIqbhS6LWeB62Dsz9H7Hrd2KNr_fmaScUgEZxJPwXDVOFs1zms_rdSos_-68F_ffZfX_z3rKeBVSPiFQOopCDgF8FKfos</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Chen, Xinting</creator><creator>Yang, Wenzhu</creator><creator>Zeng, Shuang</creator><creator>Geng, Lei</creator><creator>Jiao, Yanyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-3046-6249</orcidid></search><sort><creationdate>2023</creationdate><title>YOLOAL: Focusing on the Object Location for Detection on Drone Imagery</title><author>Chen, Xinting ; Yang, Wenzhu ; Zeng, Shuang ; Geng, Lei ; Jiao, Yanyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6e576e59617a05f357468141ebcd8e6a8a907e3ef312cbe8523dbfd09dbe46fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>attention mechanism</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Drone</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>Focusing</topic><topic>Image coding</topic><topic>loss function</topic><topic>Object recognition</topic><topic>Real-time systems</topic><topic>small dense objects detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xinting</creatorcontrib><creatorcontrib>Yang, Wenzhu</creatorcontrib><creatorcontrib>Zeng, Shuang</creatorcontrib><creatorcontrib>Geng, Lei</creatorcontrib><creatorcontrib>Jiao, Yanyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xinting</au><au>Yang, Wenzhu</au><au>Zeng, Shuang</au><au>Geng, Lei</au><au>Jiao, Yanyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>YOLOAL: Focusing on the Object Location for Detection on Drone Imagery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>128886</spage><epage>128897</epage><pages>128886-128897</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Object detection in drone-captured scenarios, which can be considered as a task of detecting dense small objects, is still a challenge. Drones navigate at different altitudes, causing significant changes in the size of the detected objects and posing a challenge to the model. Additionally, it is necessary to improve the ability of the object detection model to rapidly detect small dense objects. To address these issues, we propose YOLOAL, a model that emphasizes the location information of the objects. It incorporates a new attention mechanism called the Convolution and Coordinate Attention Module (CCAM) into its design. This mechanism performs better than traditional ones in dense small object scenes because it adds coordinates that help identify attention regions in such scenarios. Furthermore, our model uses a new loss function combined with the Efficient IoU (EIoU) and Alpha-IoU methods that achieve better results than the traditional approaches. The proposed model achieved state-of-the-art performance on the VisDrone and DOTA datasets. YOLOAL reaches an AP50 (average accuracy when Intersection over Union threshold is 0.5) of 63.6% and an mAP (average of 10 IoU thresholds, ranging from 0.5 to 0.95) of 40.8% at a real-time speed of 0.27 seconds on the VisDrone dataset, and the mAP on the DOTA dataset even reaches 39% on an NVIDIA A4000.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3332815</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-3046-6249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.128886-128897
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10318136
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects attention mechanism
Convolutional neural networks
Datasets
Drone
Drones
Feature extraction
Focusing
Image coding
loss function
Object recognition
Real-time systems
small dense objects detection
title YOLOAL: Focusing on the Object Location for Detection on Drone Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=YOLOAL:%20Focusing%20on%20the%20Object%20Location%20for%20Detection%20on%20Drone%20Imagery&rft.jtitle=IEEE%20access&rft.au=Chen,%20Xinting&rft.date=2023&rft.volume=11&rft.spage=128886&rft.epage=128897&rft.pages=128886-128897&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3332815&rft_dat=%3Cproquest_ieee_%3E2892376528%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892376528&rft_id=info:pmid/&rft_ieee_id=10318136&rft_doaj_id=oai_doaj_org_article_44b1de9ba142428780b00256600f599e&rfr_iscdi=true