Power Grid Demand and Supply Interaction Oriented UAV-Assisted Mobile Edge Network

The dramatic integration of vast quantities of clean energy causes intense impact on power grid demand and supply balance. Due to the randomness and mass of demand and supply tasks along with the diversity of task requirements, existing data interaction methods have difficulty supporting the normal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-04, Vol.11 (7), p.12132-12145
Hauptverfasser: Wu, Xin, Pi, Tanxin, Zhang, Qi, Liu, Yuhang, Yao, Lijuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12145
container_issue 7
container_start_page 12132
container_title IEEE internet of things journal
container_volume 11
creator Wu, Xin
Pi, Tanxin
Zhang, Qi
Liu, Yuhang
Yao, Lijuan
description The dramatic integration of vast quantities of clean energy causes intense impact on power grid demand and supply balance. Due to the randomness and mass of demand and supply tasks along with the diversity of task requirements, existing data interaction methods have difficulty supporting the normal operation of power grid demand and supply. Aiming at solving existing four problems of movable load data collection, real-time generation of load classification data, security of load data privacy and limited network resource allocation, this article proposes the power grid demand and supply balance data interaction structure based on UAV-assisted mobile edge network and carries out related researches as follows. In preparation for UAV application physical basis, this article optimizes the deployment method of UAV groups. The UAV federated learning (FL) structure construction optimization method is proposed to execute computing tasks of real-time load classification data under the guarantee of privacy security. Finally, to meet the requirements of real-time performance and transmission accuracy of load control instructions, this article proposes the joint allocation optimization method of limited communication and computing resource. In corresponding simulation experiments, comparisons are performed among proposed and existing methods, such as simulated annealing algorithm and quality of service, with key performance metrics involved, such as convergence iteration time and value, in order to demonstrate the effectiveness and feasibility of proposed structure and methods.
doi_str_mv 10.1109/JIOT.2023.3332372
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10317889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10317889</ieee_id><sourcerecordid>2995142104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-aabc460fa806e6aa4055d48b3d0826a66f894b1aef4f5549d57e7368cc62a50e3</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxTdGEwnyAUw8bOK5uP-7PRJEwKAYBa-bbTs1i9DW3RLCt7cNHDhMZl7y3rzkh9A9JUNKSfL0Ol-uhowwPuScMx6zK9RjnMWRUIpdX9y3aBDChhDSxiRNVA99flQH8HjqXY6fYWfLHHfzta_r7RHPywa8zRpXlXjpHbQyx-vRdzQKwYVOvFWp2wKe5D-A36E5VP73Dt0UdhtgcN59tH6ZrMazaLGczsejRZQxoZrI2jQTihRWEwXKWkGkzIVOeU40U1apQicipRYKUUgpklzGEHOls0wxKwnwPno8_a199beH0JhNtfdlW2lYkkgqGCWiddGTK_NVCB4KU3u3s_5oKDEdPdPRMx09c6bXZh5OGQcAF35OY60T_g-FUGos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995142104</pqid></control><display><type>article</type><title>Power Grid Demand and Supply Interaction Oriented UAV-Assisted Mobile Edge Network</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Wu, Xin ; Pi, Tanxin ; Zhang, Qi ; Liu, Yuhang ; Yao, Lijuan</creator><creatorcontrib>Wu, Xin ; Pi, Tanxin ; Zhang, Qi ; Liu, Yuhang ; Yao, Lijuan</creatorcontrib><description>The dramatic integration of vast quantities of clean energy causes intense impact on power grid demand and supply balance. Due to the randomness and mass of demand and supply tasks along with the diversity of task requirements, existing data interaction methods have difficulty supporting the normal operation of power grid demand and supply. Aiming at solving existing four problems of movable load data collection, real-time generation of load classification data, security of load data privacy and limited network resource allocation, this article proposes the power grid demand and supply balance data interaction structure based on UAV-assisted mobile edge network and carries out related researches as follows. In preparation for UAV application physical basis, this article optimizes the deployment method of UAV groups. The UAV federated learning (FL) structure construction optimization method is proposed to execute computing tasks of real-time load classification data under the guarantee of privacy security. Finally, to meet the requirements of real-time performance and transmission accuracy of load control instructions, this article proposes the joint allocation optimization method of limited communication and computing resource. In corresponding simulation experiments, comparisons are performed among proposed and existing methods, such as simulated annealing algorithm and quality of service, with key performance metrics involved, such as convergence iteration time and value, in order to demonstrate the effectiveness and feasibility of proposed structure and methods.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3332372</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Classification ; Clean energy ; Clean energy consumption ; Computational modeling ; Cybersecurity ; Data collection ; Data privacy ; Deep learning ; Demand ; demand and supply balance ; Edge computing ; Federated learning ; Load modeling ; Machine learning ; mobile edge network ; Optimization ; Performance measurement ; Power grids ; Privacy ; Real time ; Real-time systems ; Resource allocation ; Resource management ; Simulated annealing ; unmanned aerial vehicle</subject><ispartof>IEEE internet of things journal, 2024-04, Vol.11 (7), p.12132-12145</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-aabc460fa806e6aa4055d48b3d0826a66f894b1aef4f5549d57e7368cc62a50e3</cites><orcidid>0000-0002-7872-5816 ; 0000-0001-7372-3742 ; 0000-0001-5168-1713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10317889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10317889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Pi, Tanxin</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Liu, Yuhang</creatorcontrib><creatorcontrib>Yao, Lijuan</creatorcontrib><title>Power Grid Demand and Supply Interaction Oriented UAV-Assisted Mobile Edge Network</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The dramatic integration of vast quantities of clean energy causes intense impact on power grid demand and supply balance. Due to the randomness and mass of demand and supply tasks along with the diversity of task requirements, existing data interaction methods have difficulty supporting the normal operation of power grid demand and supply. Aiming at solving existing four problems of movable load data collection, real-time generation of load classification data, security of load data privacy and limited network resource allocation, this article proposes the power grid demand and supply balance data interaction structure based on UAV-assisted mobile edge network and carries out related researches as follows. In preparation for UAV application physical basis, this article optimizes the deployment method of UAV groups. The UAV federated learning (FL) structure construction optimization method is proposed to execute computing tasks of real-time load classification data under the guarantee of privacy security. Finally, to meet the requirements of real-time performance and transmission accuracy of load control instructions, this article proposes the joint allocation optimization method of limited communication and computing resource. In corresponding simulation experiments, comparisons are performed among proposed and existing methods, such as simulated annealing algorithm and quality of service, with key performance metrics involved, such as convergence iteration time and value, in order to demonstrate the effectiveness and feasibility of proposed structure and methods.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Classification</subject><subject>Clean energy</subject><subject>Clean energy consumption</subject><subject>Computational modeling</subject><subject>Cybersecurity</subject><subject>Data collection</subject><subject>Data privacy</subject><subject>Deep learning</subject><subject>Demand</subject><subject>demand and supply balance</subject><subject>Edge computing</subject><subject>Federated learning</subject><subject>Load modeling</subject><subject>Machine learning</subject><subject>mobile edge network</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Power grids</subject><subject>Privacy</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Simulated annealing</subject><subject>unmanned aerial vehicle</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwkAQxTdGEwnyAUw8bOK5uP-7PRJEwKAYBa-bbTs1i9DW3RLCt7cNHDhMZl7y3rzkh9A9JUNKSfL0Ol-uhowwPuScMx6zK9RjnMWRUIpdX9y3aBDChhDSxiRNVA99flQH8HjqXY6fYWfLHHfzta_r7RHPywa8zRpXlXjpHbQyx-vRdzQKwYVOvFWp2wKe5D-A36E5VP73Dt0UdhtgcN59tH6ZrMazaLGczsejRZQxoZrI2jQTihRWEwXKWkGkzIVOeU40U1apQicipRYKUUgpklzGEHOls0wxKwnwPno8_a199beH0JhNtfdlW2lYkkgqGCWiddGTK_NVCB4KU3u3s_5oKDEdPdPRMx09c6bXZh5OGQcAF35OY60T_g-FUGos</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wu, Xin</creator><creator>Pi, Tanxin</creator><creator>Zhang, Qi</creator><creator>Liu, Yuhang</creator><creator>Yao, Lijuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7872-5816</orcidid><orcidid>https://orcid.org/0000-0001-7372-3742</orcidid><orcidid>https://orcid.org/0000-0001-5168-1713</orcidid></search><sort><creationdate>20240401</creationdate><title>Power Grid Demand and Supply Interaction Oriented UAV-Assisted Mobile Edge Network</title><author>Wu, Xin ; Pi, Tanxin ; Zhang, Qi ; Liu, Yuhang ; Yao, Lijuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-aabc460fa806e6aa4055d48b3d0826a66f894b1aef4f5549d57e7368cc62a50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Classification</topic><topic>Clean energy</topic><topic>Clean energy consumption</topic><topic>Computational modeling</topic><topic>Cybersecurity</topic><topic>Data collection</topic><topic>Data privacy</topic><topic>Deep learning</topic><topic>Demand</topic><topic>demand and supply balance</topic><topic>Edge computing</topic><topic>Federated learning</topic><topic>Load modeling</topic><topic>Machine learning</topic><topic>mobile edge network</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Power grids</topic><topic>Privacy</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Simulated annealing</topic><topic>unmanned aerial vehicle</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Pi, Tanxin</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Liu, Yuhang</creatorcontrib><creatorcontrib>Yao, Lijuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Xin</au><au>Pi, Tanxin</au><au>Zhang, Qi</au><au>Liu, Yuhang</au><au>Yao, Lijuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Grid Demand and Supply Interaction Oriented UAV-Assisted Mobile Edge Network</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>11</volume><issue>7</issue><spage>12132</spage><epage>12145</epage><pages>12132-12145</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The dramatic integration of vast quantities of clean energy causes intense impact on power grid demand and supply balance. Due to the randomness and mass of demand and supply tasks along with the diversity of task requirements, existing data interaction methods have difficulty supporting the normal operation of power grid demand and supply. Aiming at solving existing four problems of movable load data collection, real-time generation of load classification data, security of load data privacy and limited network resource allocation, this article proposes the power grid demand and supply balance data interaction structure based on UAV-assisted mobile edge network and carries out related researches as follows. In preparation for UAV application physical basis, this article optimizes the deployment method of UAV groups. The UAV federated learning (FL) structure construction optimization method is proposed to execute computing tasks of real-time load classification data under the guarantee of privacy security. Finally, to meet the requirements of real-time performance and transmission accuracy of load control instructions, this article proposes the joint allocation optimization method of limited communication and computing resource. In corresponding simulation experiments, comparisons are performed among proposed and existing methods, such as simulated annealing algorithm and quality of service, with key performance metrics involved, such as convergence iteration time and value, in order to demonstrate the effectiveness and feasibility of proposed structure and methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3332372</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7872-5816</orcidid><orcidid>https://orcid.org/0000-0001-7372-3742</orcidid><orcidid>https://orcid.org/0000-0001-5168-1713</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-04, Vol.11 (7), p.12132-12145
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10317889
source IEEE/IET Electronic Library (IEL)
subjects Algorithms
Autonomous aerial vehicles
Classification
Clean energy
Clean energy consumption
Computational modeling
Cybersecurity
Data collection
Data privacy
Deep learning
Demand
demand and supply balance
Edge computing
Federated learning
Load modeling
Machine learning
mobile edge network
Optimization
Performance measurement
Power grids
Privacy
Real time
Real-time systems
Resource allocation
Resource management
Simulated annealing
unmanned aerial vehicle
title Power Grid Demand and Supply Interaction Oriented UAV-Assisted Mobile Edge Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Grid%20Demand%20and%20Supply%20Interaction%20Oriented%20UAV-Assisted%20Mobile%20Edge%20Network&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Wu,%20Xin&rft.date=2024-04-01&rft.volume=11&rft.issue=7&rft.spage=12132&rft.epage=12145&rft.pages=12132-12145&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3332372&rft_dat=%3Cproquest_RIE%3E2995142104%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995142104&rft_id=info:pmid/&rft_ieee_id=10317889&rfr_iscdi=true