Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio

A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-01, Vol.70 (1), p.436-455
Hauptverfasser: Orabona, Francesco, Jun, Kwang-Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 1
container_start_page 436
container_title IEEE transactions on information theory
container_volume 70
creator Orabona, Francesco
Jun, Kwang-Sung
description A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have shown that it is possible to convert the regret guarantee of an online learning algorithm into concentration inequalities, but these concentration results were not tight. In this paper, we show regret guarantees of universal portfolio algorithms applied to the online learning problem of betting give rise to new implicit time-uniform concentration inequalities for bounded random variables. The key feature of our concentration results is that they are centered around the maximum log wealth of the best fixed betting strategy in hindsight. We propose numerical methods to solve these implicit inequalities, which results in confidence sequences that enjoy the empirical Bernstein rate with the optimal asymptotic behavior while being never worse than Bernoulli-KL confidence bounds. We further show that our confidence sequences are never vacuous with even one sample, for any given target failure rate \delta \in (0,1) . Our empirical study shows that our confidence bounds achieve the state-of-the-art performance, especially in the small sample regime.
doi_str_mv 10.1109/TIT.2023.3330187
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10315047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10315047</ieee_id><sourcerecordid>2906589195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4512ccfd64b5197896675f873cd09e1a68f8456228a770ca5e7cd5dab42d78743</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfmc5McpVgtFBTdnkOaTdot7aYmqeB_b5b24GlmHm9mHj8A7jGaYIzUUzNvJgQROqGUIizFBRhhzkWlas4uwQgVrVKMyWtwk9K2jIxjMgJN0603GU5Db12fo8ld6BM0fTtIvmtd0eGX-z4OTYKzGPYwbxz8dOvoMgweLvvux8VkdvAjxOzDrgu34MqbXXJ35zoGy9lLM32rFu-v8-nzorKUslwNCaz1bc1WHCshVV0L7qWgtkXKYVNLLxmvCZFGCGQNd8K2vDUrRlohBaNj8Hi6e4ihJExZb8Mx9uWlJgrVXCqseHGhk8vGkFJ0Xh9itzfxV2OkB3a6sNMDO31mV1YeTiudc-6fnWKOmKB_f8FqLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906589195</pqid></control><display><type>article</type><title>Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio</title><source>IEEE Electronic Library (IEL)</source><creator>Orabona, Francesco ; Jun, Kwang-Sung</creator><creatorcontrib>Orabona, Francesco ; Jun, Kwang-Sung</creatorcontrib><description>A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have shown that it is possible to convert the regret guarantee of an online learning algorithm into concentration inequalities, but these concentration results were not tight. In this paper, we show regret guarantees of universal portfolio algorithms applied to the online learning problem of betting give rise to new implicit time-uniform concentration inequalities for bounded random variables. The key feature of our concentration results is that they are centered around the maximum log wealth of the best fixed betting strategy in hindsight. We propose numerical methods to solve these implicit inequalities, which results in confidence sequences that enjoy the empirical Bernstein rate with the optimal asymptotic behavior while being never worse than Bernoulli-KL confidence bounds. We further show that our confidence sequences are never vacuous with even one sample, for any given target failure rate &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\delta \in (0,1) &lt;/tex-math&gt;&lt;/inline-formula&gt;. Our empirical study shows that our confidence bounds achieve the state-of-the-art performance, especially in the small sample regime.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3330187</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic properties ; Behavioral sciences ; Confidence intervals ; Confidence sequence ; Distance learning ; Failure rates ; Gambling ; Inequalities ; Machine learning ; Numerical methods ; Portfolios ; Prediction algorithms ; Random variables ; regret ; Tail ; Testing ; universal portfolio ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2024-01, Vol.70 (1), p.436-455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4512ccfd64b5197896675f873cd09e1a68f8456228a770ca5e7cd5dab42d78743</citedby><cites>FETCH-LOGICAL-c334t-4512ccfd64b5197896675f873cd09e1a68f8456228a770ca5e7cd5dab42d78743</cites><orcidid>0000-0001-8119-8634 ; 0000-0001-5483-3161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10315047$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Orabona, Francesco</creatorcontrib><creatorcontrib>Jun, Kwang-Sung</creatorcontrib><title>Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have shown that it is possible to convert the regret guarantee of an online learning algorithm into concentration inequalities, but these concentration results were not tight. In this paper, we show regret guarantees of universal portfolio algorithms applied to the online learning problem of betting give rise to new implicit time-uniform concentration inequalities for bounded random variables. The key feature of our concentration results is that they are centered around the maximum log wealth of the best fixed betting strategy in hindsight. We propose numerical methods to solve these implicit inequalities, which results in confidence sequences that enjoy the empirical Bernstein rate with the optimal asymptotic behavior while being never worse than Bernoulli-KL confidence bounds. We further show that our confidence sequences are never vacuous with even one sample, for any given target failure rate &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\delta \in (0,1) &lt;/tex-math&gt;&lt;/inline-formula&gt;. Our empirical study shows that our confidence bounds achieve the state-of-the-art performance, especially in the small sample regime.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Behavioral sciences</subject><subject>Confidence intervals</subject><subject>Confidence sequence</subject><subject>Distance learning</subject><subject>Failure rates</subject><subject>Gambling</subject><subject>Inequalities</subject><subject>Machine learning</subject><subject>Numerical methods</subject><subject>Portfolios</subject><subject>Prediction algorithms</subject><subject>Random variables</subject><subject>regret</subject><subject>Tail</subject><subject>Testing</subject><subject>universal portfolio</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfmc5McpVgtFBTdnkOaTdot7aYmqeB_b5b24GlmHm9mHj8A7jGaYIzUUzNvJgQROqGUIizFBRhhzkWlas4uwQgVrVKMyWtwk9K2jIxjMgJN0603GU5Db12fo8ld6BM0fTtIvmtd0eGX-z4OTYKzGPYwbxz8dOvoMgweLvvux8VkdvAjxOzDrgu34MqbXXJ35zoGy9lLM32rFu-v8-nzorKUslwNCaz1bc1WHCshVV0L7qWgtkXKYVNLLxmvCZFGCGQNd8K2vDUrRlohBaNj8Hi6e4ihJExZb8Mx9uWlJgrVXCqseHGhk8vGkFJ0Xh9itzfxV2OkB3a6sNMDO31mV1YeTiudc-6fnWKOmKB_f8FqLw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Orabona, Francesco</creator><creator>Jun, Kwang-Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8119-8634</orcidid><orcidid>https://orcid.org/0000-0001-5483-3161</orcidid></search><sort><creationdate>202401</creationdate><title>Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio</title><author>Orabona, Francesco ; Jun, Kwang-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4512ccfd64b5197896675f873cd09e1a68f8456228a770ca5e7cd5dab42d78743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Behavioral sciences</topic><topic>Confidence intervals</topic><topic>Confidence sequence</topic><topic>Distance learning</topic><topic>Failure rates</topic><topic>Gambling</topic><topic>Inequalities</topic><topic>Machine learning</topic><topic>Numerical methods</topic><topic>Portfolios</topic><topic>Prediction algorithms</topic><topic>Random variables</topic><topic>regret</topic><topic>Tail</topic><topic>Testing</topic><topic>universal portfolio</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orabona, Francesco</creatorcontrib><creatorcontrib>Jun, Kwang-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orabona, Francesco</au><au>Jun, Kwang-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>436</spage><epage>455</epage><pages>436-455</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have shown that it is possible to convert the regret guarantee of an online learning algorithm into concentration inequalities, but these concentration results were not tight. In this paper, we show regret guarantees of universal portfolio algorithms applied to the online learning problem of betting give rise to new implicit time-uniform concentration inequalities for bounded random variables. The key feature of our concentration results is that they are centered around the maximum log wealth of the best fixed betting strategy in hindsight. We propose numerical methods to solve these implicit inequalities, which results in confidence sequences that enjoy the empirical Bernstein rate with the optimal asymptotic behavior while being never worse than Bernoulli-KL confidence bounds. We further show that our confidence sequences are never vacuous with even one sample, for any given target failure rate &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\delta \in (0,1) &lt;/tex-math&gt;&lt;/inline-formula&gt;. Our empirical study shows that our confidence bounds achieve the state-of-the-art performance, especially in the small sample regime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3330187</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8119-8634</orcidid><orcidid>https://orcid.org/0000-0001-5483-3161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-01, Vol.70 (1), p.436-455
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_10315047
source IEEE Electronic Library (IEL)
subjects Algorithms
Asymptotic properties
Behavioral sciences
Confidence intervals
Confidence sequence
Distance learning
Failure rates
Gambling
Inequalities
Machine learning
Numerical methods
Portfolios
Prediction algorithms
Random variables
regret
Tail
Testing
universal portfolio
Upper bound
title Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20Concentrations%20and%20Confidence%20Sequences%20From%20the%20Regret%20of%20Universal%20Portfolio&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Orabona,%20Francesco&rft.date=2024-01&rft.volume=70&rft.issue=1&rft.spage=436&rft.epage=455&rft.pages=436-455&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3330187&rft_dat=%3Cproquest_ieee_%3E2906589195%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906589195&rft_id=info:pmid/&rft_ieee_id=10315047&rfr_iscdi=true