Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio
A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have sh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2024-01, Vol.70 (1), p.436-455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 1 |
container_start_page | 436 |
container_title | IEEE transactions on information theory |
container_volume | 70 |
creator | Orabona, Francesco Jun, Kwang-Sung |
description | A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have shown that it is possible to convert the regret guarantee of an online learning algorithm into concentration inequalities, but these concentration results were not tight. In this paper, we show regret guarantees of universal portfolio algorithms applied to the online learning problem of betting give rise to new implicit time-uniform concentration inequalities for bounded random variables. The key feature of our concentration results is that they are centered around the maximum log wealth of the best fixed betting strategy in hindsight. We propose numerical methods to solve these implicit inequalities, which results in confidence sequences that enjoy the empirical Bernstein rate with the optimal asymptotic behavior while being never worse than Bernoulli-KL confidence bounds. We further show that our confidence sequences are never vacuous with even one sample, for any given target failure rate \delta \in (0,1) . Our empirical study shows that our confidence bounds achieve the state-of-the-art performance, especially in the small sample regime. |
doi_str_mv | 10.1109/TIT.2023.3330187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10315047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10315047</ieee_id><sourcerecordid>2906589195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4512ccfd64b5197896675f873cd09e1a68f8456228a770ca5e7cd5dab42d78743</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfmc5McpVgtFBTdnkOaTdot7aYmqeB_b5b24GlmHm9mHj8A7jGaYIzUUzNvJgQROqGUIizFBRhhzkWlas4uwQgVrVKMyWtwk9K2jIxjMgJN0603GU5Db12fo8ld6BM0fTtIvmtd0eGX-z4OTYKzGPYwbxz8dOvoMgweLvvux8VkdvAjxOzDrgu34MqbXXJ35zoGy9lLM32rFu-v8-nzorKUslwNCaz1bc1WHCshVV0L7qWgtkXKYVNLLxmvCZFGCGQNd8K2vDUrRlohBaNj8Hi6e4ihJExZb8Mx9uWlJgrVXCqseHGhk8vGkFJ0Xh9itzfxV2OkB3a6sNMDO31mV1YeTiudc-6fnWKOmKB_f8FqLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906589195</pqid></control><display><type>article</type><title>Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio</title><source>IEEE Electronic Library (IEL)</source><creator>Orabona, Francesco ; Jun, Kwang-Sung</creator><creatorcontrib>Orabona, Francesco ; Jun, Kwang-Sung</creatorcontrib><description>A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have shown that it is possible to convert the regret guarantee of an online learning algorithm into concentration inequalities, but these concentration results were not tight. In this paper, we show regret guarantees of universal portfolio algorithms applied to the online learning problem of betting give rise to new implicit time-uniform concentration inequalities for bounded random variables. The key feature of our concentration results is that they are centered around the maximum log wealth of the best fixed betting strategy in hindsight. We propose numerical methods to solve these implicit inequalities, which results in confidence sequences that enjoy the empirical Bernstein rate with the optimal asymptotic behavior while being never worse than Bernoulli-KL confidence bounds. We further show that our confidence sequences are never vacuous with even one sample, for any given target failure rate <inline-formula> <tex-math notation="LaTeX">\delta \in (0,1) </tex-math></inline-formula>. Our empirical study shows that our confidence bounds achieve the state-of-the-art performance, especially in the small sample regime.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3330187</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic properties ; Behavioral sciences ; Confidence intervals ; Confidence sequence ; Distance learning ; Failure rates ; Gambling ; Inequalities ; Machine learning ; Numerical methods ; Portfolios ; Prediction algorithms ; Random variables ; regret ; Tail ; Testing ; universal portfolio ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2024-01, Vol.70 (1), p.436-455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4512ccfd64b5197896675f873cd09e1a68f8456228a770ca5e7cd5dab42d78743</citedby><cites>FETCH-LOGICAL-c334t-4512ccfd64b5197896675f873cd09e1a68f8456228a770ca5e7cd5dab42d78743</cites><orcidid>0000-0001-8119-8634 ; 0000-0001-5483-3161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10315047$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Orabona, Francesco</creatorcontrib><creatorcontrib>Jun, Kwang-Sung</creatorcontrib><title>Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have shown that it is possible to convert the regret guarantee of an online learning algorithm into concentration inequalities, but these concentration results were not tight. In this paper, we show regret guarantees of universal portfolio algorithms applied to the online learning problem of betting give rise to new implicit time-uniform concentration inequalities for bounded random variables. The key feature of our concentration results is that they are centered around the maximum log wealth of the best fixed betting strategy in hindsight. We propose numerical methods to solve these implicit inequalities, which results in confidence sequences that enjoy the empirical Bernstein rate with the optimal asymptotic behavior while being never worse than Bernoulli-KL confidence bounds. We further show that our confidence sequences are never vacuous with even one sample, for any given target failure rate <inline-formula> <tex-math notation="LaTeX">\delta \in (0,1) </tex-math></inline-formula>. Our empirical study shows that our confidence bounds achieve the state-of-the-art performance, especially in the small sample regime.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Behavioral sciences</subject><subject>Confidence intervals</subject><subject>Confidence sequence</subject><subject>Distance learning</subject><subject>Failure rates</subject><subject>Gambling</subject><subject>Inequalities</subject><subject>Machine learning</subject><subject>Numerical methods</subject><subject>Portfolios</subject><subject>Prediction algorithms</subject><subject>Random variables</subject><subject>regret</subject><subject>Tail</subject><subject>Testing</subject><subject>universal portfolio</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfmc5McpVgtFBTdnkOaTdot7aYmqeB_b5b24GlmHm9mHj8A7jGaYIzUUzNvJgQROqGUIizFBRhhzkWlas4uwQgVrVKMyWtwk9K2jIxjMgJN0603GU5Db12fo8ld6BM0fTtIvmtd0eGX-z4OTYKzGPYwbxz8dOvoMgweLvvux8VkdvAjxOzDrgu34MqbXXJ35zoGy9lLM32rFu-v8-nzorKUslwNCaz1bc1WHCshVV0L7qWgtkXKYVNLLxmvCZFGCGQNd8K2vDUrRlohBaNj8Hi6e4ihJExZb8Mx9uWlJgrVXCqseHGhk8vGkFJ0Xh9itzfxV2OkB3a6sNMDO31mV1YeTiudc-6fnWKOmKB_f8FqLw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Orabona, Francesco</creator><creator>Jun, Kwang-Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8119-8634</orcidid><orcidid>https://orcid.org/0000-0001-5483-3161</orcidid></search><sort><creationdate>202401</creationdate><title>Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio</title><author>Orabona, Francesco ; Jun, Kwang-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4512ccfd64b5197896675f873cd09e1a68f8456228a770ca5e7cd5dab42d78743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Behavioral sciences</topic><topic>Confidence intervals</topic><topic>Confidence sequence</topic><topic>Distance learning</topic><topic>Failure rates</topic><topic>Gambling</topic><topic>Inequalities</topic><topic>Machine learning</topic><topic>Numerical methods</topic><topic>Portfolios</topic><topic>Prediction algorithms</topic><topic>Random variables</topic><topic>regret</topic><topic>Tail</topic><topic>Testing</topic><topic>universal portfolio</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orabona, Francesco</creatorcontrib><creatorcontrib>Jun, Kwang-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orabona, Francesco</au><au>Jun, Kwang-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>436</spage><epage>455</epage><pages>436-455</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A classic problem in statistics is the estimation of the expectation of random variables from samples. This gives rise to the tightly connected problems of deriving concentration inequalities and confidence sequences, i.e., confidence intervals that hold uniformly over time. Previous studies have shown that it is possible to convert the regret guarantee of an online learning algorithm into concentration inequalities, but these concentration results were not tight. In this paper, we show regret guarantees of universal portfolio algorithms applied to the online learning problem of betting give rise to new implicit time-uniform concentration inequalities for bounded random variables. The key feature of our concentration results is that they are centered around the maximum log wealth of the best fixed betting strategy in hindsight. We propose numerical methods to solve these implicit inequalities, which results in confidence sequences that enjoy the empirical Bernstein rate with the optimal asymptotic behavior while being never worse than Bernoulli-KL confidence bounds. We further show that our confidence sequences are never vacuous with even one sample, for any given target failure rate <inline-formula> <tex-math notation="LaTeX">\delta \in (0,1) </tex-math></inline-formula>. Our empirical study shows that our confidence bounds achieve the state-of-the-art performance, especially in the small sample regime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3330187</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8119-8634</orcidid><orcidid>https://orcid.org/0000-0001-5483-3161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2024-01, Vol.70 (1), p.436-455 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_10315047 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Asymptotic properties Behavioral sciences Confidence intervals Confidence sequence Distance learning Failure rates Gambling Inequalities Machine learning Numerical methods Portfolios Prediction algorithms Random variables regret Tail Testing universal portfolio Upper bound |
title | Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20Concentrations%20and%20Confidence%20Sequences%20From%20the%20Regret%20of%20Universal%20Portfolio&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Orabona,%20Francesco&rft.date=2024-01&rft.volume=70&rft.issue=1&rft.spage=436&rft.epage=455&rft.pages=436-455&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3330187&rft_dat=%3Cproquest_ieee_%3E2906589195%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906589195&rft_id=info:pmid/&rft_ieee_id=10315047&rfr_iscdi=true |