Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network
Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2024-06, Vol.73 (2), p.922-936 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 936 |
---|---|
container_issue | 2 |
container_start_page | 922 |
container_title | IEEE transactions on reliability |
container_volume | 73 |
creator | Huang, Chao Bu, Siqi Fei, Cheng-Wei Lee, Namkyoung Kong, Shu Wa |
description | Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this article employs a unified reliability assessment method by processing the uncertainties simultaneously. To overcome the extremely time-consuming limitation of probabilistic finite-element model simulation, this article develops an ensemble generalized constraint neural network (EGCNN)-based unified reliability assessment method. The developed EGCNN surrogate model can conduct efficient, accurate, interpretable, and robust reliability assessments with nonlinear fitting capability, knowledge interpretability, and premature avoidance ability. The developed EGCNN-based unified reliability assessment method can also be applied to other assets and failure mechanisms, providing a new reliability-based design optimization tool. |
doi_str_mv | 10.1109/TR.2023.3324896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10314851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10314851</ieee_id><sourcerecordid>3064713467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-2959532cc1e3ed7f5ba69a0c63b97dcc2595e50ceda03f9dfc2b3d5ac95a31bc3</originalsourceid><addsrcrecordid>eNpNUM9PwjAYbYwmInr24qGJ50F_rNt6RAJoQjQhEI9L133Dwlix3YL411sCB08v3_vej-Qh9EjJgFIih8vFgBHGB5yzOJPJFepRIbKIpoxeox4hNIukYPIW3Xm_CWccy6yHfhZQG1WY2rRHPPIevN9B0-LKOjwCZ6FZmwbwS2381uNVU4LDc3vA46OuAU9Va9Yd4E_TfuFJ42FXBHYGDThVm18o8dg2vnXKhMh36AIboD1Yt71HN5WqPTxcsI9W08ly_BrNP2Zv49E80iyO24hJIQVnWlPgUKaVKFQiFdEJL2Raas3CGwTRUCrCK1lWmhW8FEpLoTgtNO-j53Pu3tnvDnybb2znmlCZc5LEKeVxkgbV8KzSznrvoMr3zuyUO-aU5Kd58-UiP82bX-YNjqezwwDAPzWncSYo_wM_vniD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064713467</pqid></control><display><type>article</type><title>Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Chao ; Bu, Siqi ; Fei, Cheng-Wei ; Lee, Namkyoung ; Kong, Shu Wa</creator><creatorcontrib>Huang, Chao ; Bu, Siqi ; Fei, Cheng-Wei ; Lee, Namkyoung ; Kong, Shu Wa</creatorcontrib><description>Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this article employs a unified reliability assessment method by processing the uncertainties simultaneously. To overcome the extremely time-consuming limitation of probabilistic finite-element model simulation, this article develops an ensemble generalized constraint neural network (EGCNN)-based unified reliability assessment method. The developed EGCNN surrogate model can conduct efficient, accurate, interpretable, and robust reliability assessments with nonlinear fitting capability, knowledge interpretability, and premature avoidance ability. The developed EGCNN-based unified reliability assessment method can also be applied to other assets and failure mechanisms, providing a new reliability-based design optimization tool.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2023.3324896</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace engines ; Analytical models ; Blisks ; Constraint handling ; Design optimization ; Failure mechanisms ; Fatigue ; Fatigue failure ; Finite element method ; Generalized constraint neural network (GCNN) ; interpretable machine learning ; Life prediction ; Low cycle fatigue ; Neural networks ; Probabilistic logic ; Reliability analysis ; Reliability engineering ; structural reliability assessment ; surrogate model ; Uncertainty ; Working conditions</subject><ispartof>IEEE transactions on reliability, 2024-06, Vol.73 (2), p.922-936</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-2959532cc1e3ed7f5ba69a0c63b97dcc2595e50ceda03f9dfc2b3d5ac95a31bc3</cites><orcidid>0009-0006-7375-4526 ; 0000-0002-1047-2568 ; 0000-0001-5333-1055 ; 0000-0001-7313-581X ; 0000-0001-5938-6292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10314851$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10314851$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Chao</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><creatorcontrib>Lee, Namkyoung</creatorcontrib><creatorcontrib>Kong, Shu Wa</creatorcontrib><title>Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this article employs a unified reliability assessment method by processing the uncertainties simultaneously. To overcome the extremely time-consuming limitation of probabilistic finite-element model simulation, this article develops an ensemble generalized constraint neural network (EGCNN)-based unified reliability assessment method. The developed EGCNN surrogate model can conduct efficient, accurate, interpretable, and robust reliability assessments with nonlinear fitting capability, knowledge interpretability, and premature avoidance ability. The developed EGCNN-based unified reliability assessment method can also be applied to other assets and failure mechanisms, providing a new reliability-based design optimization tool.</description><subject>Aerospace engines</subject><subject>Analytical models</subject><subject>Blisks</subject><subject>Constraint handling</subject><subject>Design optimization</subject><subject>Failure mechanisms</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Generalized constraint neural network (GCNN)</subject><subject>interpretable machine learning</subject><subject>Life prediction</subject><subject>Low cycle fatigue</subject><subject>Neural networks</subject><subject>Probabilistic logic</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>structural reliability assessment</subject><subject>surrogate model</subject><subject>Uncertainty</subject><subject>Working conditions</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUM9PwjAYbYwmInr24qGJ50F_rNt6RAJoQjQhEI9L133Dwlix3YL411sCB08v3_vej-Qh9EjJgFIih8vFgBHGB5yzOJPJFepRIbKIpoxeox4hNIukYPIW3Xm_CWccy6yHfhZQG1WY2rRHPPIevN9B0-LKOjwCZ6FZmwbwS2381uNVU4LDc3vA46OuAU9Va9Yd4E_TfuFJ42FXBHYGDThVm18o8dg2vnXKhMh36AIboD1Yt71HN5WqPTxcsI9W08ly_BrNP2Zv49E80iyO24hJIQVnWlPgUKaVKFQiFdEJL2Raas3CGwTRUCrCK1lWmhW8FEpLoTgtNO-j53Pu3tnvDnybb2znmlCZc5LEKeVxkgbV8KzSznrvoMr3zuyUO-aU5Kd58-UiP82bX-YNjqezwwDAPzWncSYo_wM_vniD</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Huang, Chao</creator><creator>Bu, Siqi</creator><creator>Fei, Cheng-Wei</creator><creator>Lee, Namkyoung</creator><creator>Kong, Shu Wa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-7375-4526</orcidid><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><orcidid>https://orcid.org/0000-0001-7313-581X</orcidid><orcidid>https://orcid.org/0000-0001-5938-6292</orcidid></search><sort><creationdate>202406</creationdate><title>Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network</title><author>Huang, Chao ; Bu, Siqi ; Fei, Cheng-Wei ; Lee, Namkyoung ; Kong, Shu Wa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-2959532cc1e3ed7f5ba69a0c63b97dcc2595e50ceda03f9dfc2b3d5ac95a31bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace engines</topic><topic>Analytical models</topic><topic>Blisks</topic><topic>Constraint handling</topic><topic>Design optimization</topic><topic>Failure mechanisms</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Generalized constraint neural network (GCNN)</topic><topic>interpretable machine learning</topic><topic>Life prediction</topic><topic>Low cycle fatigue</topic><topic>Neural networks</topic><topic>Probabilistic logic</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>structural reliability assessment</topic><topic>surrogate model</topic><topic>Uncertainty</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chao</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><creatorcontrib>Lee, Namkyoung</creatorcontrib><creatorcontrib>Kong, Shu Wa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Chao</au><au>Bu, Siqi</au><au>Fei, Cheng-Wei</au><au>Lee, Namkyoung</au><au>Kong, Shu Wa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2024-06</date><risdate>2024</risdate><volume>73</volume><issue>2</issue><spage>922</spage><epage>936</epage><pages>922-936</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this article employs a unified reliability assessment method by processing the uncertainties simultaneously. To overcome the extremely time-consuming limitation of probabilistic finite-element model simulation, this article develops an ensemble generalized constraint neural network (EGCNN)-based unified reliability assessment method. The developed EGCNN surrogate model can conduct efficient, accurate, interpretable, and robust reliability assessments with nonlinear fitting capability, knowledge interpretability, and premature avoidance ability. The developed EGCNN-based unified reliability assessment method can also be applied to other assets and failure mechanisms, providing a new reliability-based design optimization tool.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2023.3324896</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0006-7375-4526</orcidid><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><orcidid>https://orcid.org/0000-0001-7313-581X</orcidid><orcidid>https://orcid.org/0000-0001-5938-6292</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2024-06, Vol.73 (2), p.922-936 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_ieee_primary_10314851 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace engines Analytical models Blisks Constraint handling Design optimization Failure mechanisms Fatigue Fatigue failure Finite element method Generalized constraint neural network (GCNN) interpretable machine learning Life prediction Low cycle fatigue Neural networks Probabilistic logic Reliability analysis Reliability engineering structural reliability assessment surrogate model Uncertainty Working conditions |
title | Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20Assessment%20for%20Aeroengine%20Blisks%20Under%20Low%20Cycle%20Fatigue%20With%20Ensemble%20Generalized%20Constraint%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Huang,%20Chao&rft.date=2024-06&rft.volume=73&rft.issue=2&rft.spage=922&rft.epage=936&rft.pages=922-936&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2023.3324896&rft_dat=%3Cproquest_RIE%3E3064713467%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064713467&rft_id=info:pmid/&rft_ieee_id=10314851&rfr_iscdi=true |