Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network

Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2024-06, Vol.73 (2), p.922-936
Hauptverfasser: Huang, Chao, Bu, Siqi, Fei, Cheng-Wei, Lee, Namkyoung, Kong, Shu Wa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 936
container_issue 2
container_start_page 922
container_title IEEE transactions on reliability
container_volume 73
creator Huang, Chao
Bu, Siqi
Fei, Cheng-Wei
Lee, Namkyoung
Kong, Shu Wa
description Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this article employs a unified reliability assessment method by processing the uncertainties simultaneously. To overcome the extremely time-consuming limitation of probabilistic finite-element model simulation, this article develops an ensemble generalized constraint neural network (EGCNN)-based unified reliability assessment method. The developed EGCNN surrogate model can conduct efficient, accurate, interpretable, and robust reliability assessments with nonlinear fitting capability, knowledge interpretability, and premature avoidance ability. The developed EGCNN-based unified reliability assessment method can also be applied to other assets and failure mechanisms, providing a new reliability-based design optimization tool.
doi_str_mv 10.1109/TR.2023.3324896
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10314851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10314851</ieee_id><sourcerecordid>3064713467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-2959532cc1e3ed7f5ba69a0c63b97dcc2595e50ceda03f9dfc2b3d5ac95a31bc3</originalsourceid><addsrcrecordid>eNpNUM9PwjAYbYwmInr24qGJ50F_rNt6RAJoQjQhEI9L133Dwlix3YL411sCB08v3_vej-Qh9EjJgFIih8vFgBHGB5yzOJPJFepRIbKIpoxeox4hNIukYPIW3Xm_CWccy6yHfhZQG1WY2rRHPPIevN9B0-LKOjwCZ6FZmwbwS2381uNVU4LDc3vA46OuAU9Va9Yd4E_TfuFJ42FXBHYGDThVm18o8dg2vnXKhMh36AIboD1Yt71HN5WqPTxcsI9W08ly_BrNP2Zv49E80iyO24hJIQVnWlPgUKaVKFQiFdEJL2Raas3CGwTRUCrCK1lWmhW8FEpLoTgtNO-j53Pu3tnvDnybb2znmlCZc5LEKeVxkgbV8KzSznrvoMr3zuyUO-aU5Kd58-UiP82bX-YNjqezwwDAPzWncSYo_wM_vniD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064713467</pqid></control><display><type>article</type><title>Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Chao ; Bu, Siqi ; Fei, Cheng-Wei ; Lee, Namkyoung ; Kong, Shu Wa</creator><creatorcontrib>Huang, Chao ; Bu, Siqi ; Fei, Cheng-Wei ; Lee, Namkyoung ; Kong, Shu Wa</creatorcontrib><description>Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this article employs a unified reliability assessment method by processing the uncertainties simultaneously. To overcome the extremely time-consuming limitation of probabilistic finite-element model simulation, this article develops an ensemble generalized constraint neural network (EGCNN)-based unified reliability assessment method. The developed EGCNN surrogate model can conduct efficient, accurate, interpretable, and robust reliability assessments with nonlinear fitting capability, knowledge interpretability, and premature avoidance ability. The developed EGCNN-based unified reliability assessment method can also be applied to other assets and failure mechanisms, providing a new reliability-based design optimization tool.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2023.3324896</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace engines ; Analytical models ; Blisks ; Constraint handling ; Design optimization ; Failure mechanisms ; Fatigue ; Fatigue failure ; Finite element method ; Generalized constraint neural network (GCNN) ; interpretable machine learning ; Life prediction ; Low cycle fatigue ; Neural networks ; Probabilistic logic ; Reliability analysis ; Reliability engineering ; structural reliability assessment ; surrogate model ; Uncertainty ; Working conditions</subject><ispartof>IEEE transactions on reliability, 2024-06, Vol.73 (2), p.922-936</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-2959532cc1e3ed7f5ba69a0c63b97dcc2595e50ceda03f9dfc2b3d5ac95a31bc3</cites><orcidid>0009-0006-7375-4526 ; 0000-0002-1047-2568 ; 0000-0001-5333-1055 ; 0000-0001-7313-581X ; 0000-0001-5938-6292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10314851$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10314851$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Chao</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><creatorcontrib>Lee, Namkyoung</creatorcontrib><creatorcontrib>Kong, Shu Wa</creatorcontrib><title>Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this article employs a unified reliability assessment method by processing the uncertainties simultaneously. To overcome the extremely time-consuming limitation of probabilistic finite-element model simulation, this article develops an ensemble generalized constraint neural network (EGCNN)-based unified reliability assessment method. The developed EGCNN surrogate model can conduct efficient, accurate, interpretable, and robust reliability assessments with nonlinear fitting capability, knowledge interpretability, and premature avoidance ability. The developed EGCNN-based unified reliability assessment method can also be applied to other assets and failure mechanisms, providing a new reliability-based design optimization tool.</description><subject>Aerospace engines</subject><subject>Analytical models</subject><subject>Blisks</subject><subject>Constraint handling</subject><subject>Design optimization</subject><subject>Failure mechanisms</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Generalized constraint neural network (GCNN)</subject><subject>interpretable machine learning</subject><subject>Life prediction</subject><subject>Low cycle fatigue</subject><subject>Neural networks</subject><subject>Probabilistic logic</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>structural reliability assessment</subject><subject>surrogate model</subject><subject>Uncertainty</subject><subject>Working conditions</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUM9PwjAYbYwmInr24qGJ50F_rNt6RAJoQjQhEI9L133Dwlix3YL411sCB08v3_vej-Qh9EjJgFIih8vFgBHGB5yzOJPJFepRIbKIpoxeox4hNIukYPIW3Xm_CWccy6yHfhZQG1WY2rRHPPIevN9B0-LKOjwCZ6FZmwbwS2381uNVU4LDc3vA46OuAU9Va9Yd4E_TfuFJ42FXBHYGDThVm18o8dg2vnXKhMh36AIboD1Yt71HN5WqPTxcsI9W08ly_BrNP2Zv49E80iyO24hJIQVnWlPgUKaVKFQiFdEJL2Raas3CGwTRUCrCK1lWmhW8FEpLoTgtNO-j53Pu3tnvDnybb2znmlCZc5LEKeVxkgbV8KzSznrvoMr3zuyUO-aU5Kd58-UiP82bX-YNjqezwwDAPzWncSYo_wM_vniD</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Huang, Chao</creator><creator>Bu, Siqi</creator><creator>Fei, Cheng-Wei</creator><creator>Lee, Namkyoung</creator><creator>Kong, Shu Wa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-7375-4526</orcidid><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><orcidid>https://orcid.org/0000-0001-7313-581X</orcidid><orcidid>https://orcid.org/0000-0001-5938-6292</orcidid></search><sort><creationdate>202406</creationdate><title>Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network</title><author>Huang, Chao ; Bu, Siqi ; Fei, Cheng-Wei ; Lee, Namkyoung ; Kong, Shu Wa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-2959532cc1e3ed7f5ba69a0c63b97dcc2595e50ceda03f9dfc2b3d5ac95a31bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace engines</topic><topic>Analytical models</topic><topic>Blisks</topic><topic>Constraint handling</topic><topic>Design optimization</topic><topic>Failure mechanisms</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Generalized constraint neural network (GCNN)</topic><topic>interpretable machine learning</topic><topic>Life prediction</topic><topic>Low cycle fatigue</topic><topic>Neural networks</topic><topic>Probabilistic logic</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>structural reliability assessment</topic><topic>surrogate model</topic><topic>Uncertainty</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chao</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><creatorcontrib>Lee, Namkyoung</creatorcontrib><creatorcontrib>Kong, Shu Wa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Chao</au><au>Bu, Siqi</au><au>Fei, Cheng-Wei</au><au>Lee, Namkyoung</au><au>Kong, Shu Wa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2024-06</date><risdate>2024</risdate><volume>73</volume><issue>2</issue><spage>922</spage><epage>936</epage><pages>922-936</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Aeroengine blisks operate in a harsh working environment and are prone to low cycle fatigue (LCF) failure. The probabilistic LCF life prediction considering multiple uncertainties needs to be performed for reliability assessment. To consider the combined effects of heterogeneous uncertainties, this article employs a unified reliability assessment method by processing the uncertainties simultaneously. To overcome the extremely time-consuming limitation of probabilistic finite-element model simulation, this article develops an ensemble generalized constraint neural network (EGCNN)-based unified reliability assessment method. The developed EGCNN surrogate model can conduct efficient, accurate, interpretable, and robust reliability assessments with nonlinear fitting capability, knowledge interpretability, and premature avoidance ability. The developed EGCNN-based unified reliability assessment method can also be applied to other assets and failure mechanisms, providing a new reliability-based design optimization tool.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2023.3324896</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0006-7375-4526</orcidid><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><orcidid>https://orcid.org/0000-0001-7313-581X</orcidid><orcidid>https://orcid.org/0000-0001-5938-6292</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2024-06, Vol.73 (2), p.922-936
issn 0018-9529
1558-1721
language eng
recordid cdi_ieee_primary_10314851
source IEEE Electronic Library (IEL)
subjects Aerospace engines
Analytical models
Blisks
Constraint handling
Design optimization
Failure mechanisms
Fatigue
Fatigue failure
Finite element method
Generalized constraint neural network (GCNN)
interpretable machine learning
Life prediction
Low cycle fatigue
Neural networks
Probabilistic logic
Reliability analysis
Reliability engineering
structural reliability assessment
surrogate model
Uncertainty
Working conditions
title Reliability Assessment for Aeroengine Blisks Under Low Cycle Fatigue With Ensemble Generalized Constraint Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20Assessment%20for%20Aeroengine%20Blisks%20Under%20Low%20Cycle%20Fatigue%20With%20Ensemble%20Generalized%20Constraint%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Huang,%20Chao&rft.date=2024-06&rft.volume=73&rft.issue=2&rft.spage=922&rft.epage=936&rft.pages=922-936&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2023.3324896&rft_dat=%3Cproquest_RIE%3E3064713467%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064713467&rft_id=info:pmid/&rft_ieee_id=10314851&rfr_iscdi=true