Synthetic Datasets for Autonomous Driving: A Survey

Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2024-01, Vol.9 (1), p.1847-1864
Hauptverfasser: Song, Zhihang, He, Zimin, Li, Xingyu, Ma, Qiming, Ming, Ruibo, Mao, Zhiqi, Pei, Huaxin, Peng, Lihui, Hu, Jianming, Yao, Danya, Zhang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1864
container_issue 1
container_start_page 1847
container_title IEEE transactions on intelligent vehicles
container_volume 9
creator Song, Zhihang
He, Zimin
Li, Xingyu
Ma, Qiming
Ming, Ruibo
Mao, Zhiqi
Pei, Huaxin
Peng, Lihui
Hu, Jianming
Yao, Danya
Zhang, Yi
description Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for the autonomous driving perception study. We also discuss the role that synthetic datasets play in the evaluation, gap test, and positive effect of autonomous driving-related algorithm testing, especially on trustworthiness and safety aspects, and provide examples of evaluation experiments. Finally, we discuss the limitations and future directions of synthetic datasets. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.
doi_str_mv 10.1109/TIV.2023.3331024
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10313052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10313052</ieee_id><sourcerecordid>2930962450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b410f7825ac66da1306db36e18d6d6a0f70705d5903bf2ad406842aa431e287e3</originalsourceid><addsrcrecordid>eNpNkE1rwzAMhs3YYKXrfYcdAjunk6XEsXcr7T4KhR3a7WrcxNlS1riznUL__VLawU4S6Hkl8TB2y2HMOaiH1fxjjIA0JiIOmF2wAVKhUqkgu_zrZS6v2SiEDQBwIVGCGjBaHtr4ZWNTJjMTTbAxJLXzyaSLrnVb14Vk5pt9034-JpNk2fm9Pdywq9p8Bzs61yF7f35aTV_TxdvLfDpZpCUqjOk641AXEnNTClEZTiCqNQnLZSUqYfoZFJBXuQJa12iqDITM0JiMuEVZWBqy-9PenXc_nQ1Rb1zn2_6kRkWgBGY59BScqNK7ELyt9c43W-MPmoM-2tG9HX20o892-sjdKdJYa__h1P-YI_0CthBeTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930962450</pqid></control><display><type>article</type><title>Synthetic Datasets for Autonomous Driving: A Survey</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Zhihang ; He, Zimin ; Li, Xingyu ; Ma, Qiming ; Ming, Ruibo ; Mao, Zhiqi ; Pei, Huaxin ; Peng, Lihui ; Hu, Jianming ; Yao, Danya ; Zhang, Yi</creator><creatorcontrib>Song, Zhihang ; He, Zimin ; Li, Xingyu ; Ma, Qiming ; Ming, Ruibo ; Mao, Zhiqi ; Pei, Huaxin ; Peng, Lihui ; Hu, Jianming ; Yao, Danya ; Zhang, Yi</creatorcontrib><description>Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for the autonomous driving perception study. We also discuss the role that synthetic datasets play in the evaluation, gap test, and positive effect of autonomous driving-related algorithm testing, especially on trustworthiness and safety aspects, and provide examples of evaluation experiments. Finally, we discuss the limitations and future directions of synthetic datasets. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2023.3331024</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Annotations ; Autonomous driving ; Autonomous vehicles ; dataset evaluation ; Datasets ; Estimation ; gap test ; Surveys ; Synthetic data ; synthetic dataset ; Task analysis ; Testing ; trustworthiness</subject><ispartof>IEEE transactions on intelligent vehicles, 2024-01, Vol.9 (1), p.1847-1864</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b410f7825ac66da1306db36e18d6d6a0f70705d5903bf2ad406842aa431e287e3</citedby><cites>FETCH-LOGICAL-c292t-b410f7825ac66da1306db36e18d6d6a0f70705d5903bf2ad406842aa431e287e3</cites><orcidid>0000-0002-2818-2147 ; 0009-0003-9432-8655 ; 0000-0003-4815-2778 ; 0009-0009-3662-0627 ; 0000-0001-7363-6374 ; 0000-0001-8065-7309 ; 0000-0001-5032-6322 ; 0009-0006-1967-0639 ; 0000-0001-9505-2628 ; 0000-0001-5526-866X ; 0009-0002-4530-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10313052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10313052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Zhihang</creatorcontrib><creatorcontrib>He, Zimin</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><creatorcontrib>Ma, Qiming</creatorcontrib><creatorcontrib>Ming, Ruibo</creatorcontrib><creatorcontrib>Mao, Zhiqi</creatorcontrib><creatorcontrib>Pei, Huaxin</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Hu, Jianming</creatorcontrib><creatorcontrib>Yao, Danya</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><title>Synthetic Datasets for Autonomous Driving: A Survey</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for the autonomous driving perception study. We also discuss the role that synthetic datasets play in the evaluation, gap test, and positive effect of autonomous driving-related algorithm testing, especially on trustworthiness and safety aspects, and provide examples of evaluation experiments. Finally, we discuss the limitations and future directions of synthetic datasets. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Autonomous driving</subject><subject>Autonomous vehicles</subject><subject>dataset evaluation</subject><subject>Datasets</subject><subject>Estimation</subject><subject>gap test</subject><subject>Surveys</subject><subject>Synthetic data</subject><subject>synthetic dataset</subject><subject>Task analysis</subject><subject>Testing</subject><subject>trustworthiness</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rwzAMhs3YYKXrfYcdAjunk6XEsXcr7T4KhR3a7WrcxNlS1riznUL__VLawU4S6Hkl8TB2y2HMOaiH1fxjjIA0JiIOmF2wAVKhUqkgu_zrZS6v2SiEDQBwIVGCGjBaHtr4ZWNTJjMTTbAxJLXzyaSLrnVb14Vk5pt9034-JpNk2fm9Pdywq9p8Bzs61yF7f35aTV_TxdvLfDpZpCUqjOk641AXEnNTClEZTiCqNQnLZSUqYfoZFJBXuQJa12iqDITM0JiMuEVZWBqy-9PenXc_nQ1Rb1zn2_6kRkWgBGY59BScqNK7ELyt9c43W-MPmoM-2tG9HX20o892-sjdKdJYa__h1P-YI_0CthBeTQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Song, Zhihang</creator><creator>He, Zimin</creator><creator>Li, Xingyu</creator><creator>Ma, Qiming</creator><creator>Ming, Ruibo</creator><creator>Mao, Zhiqi</creator><creator>Pei, Huaxin</creator><creator>Peng, Lihui</creator><creator>Hu, Jianming</creator><creator>Yao, Danya</creator><creator>Zhang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2818-2147</orcidid><orcidid>https://orcid.org/0009-0003-9432-8655</orcidid><orcidid>https://orcid.org/0000-0003-4815-2778</orcidid><orcidid>https://orcid.org/0009-0009-3662-0627</orcidid><orcidid>https://orcid.org/0000-0001-7363-6374</orcidid><orcidid>https://orcid.org/0000-0001-8065-7309</orcidid><orcidid>https://orcid.org/0000-0001-5032-6322</orcidid><orcidid>https://orcid.org/0009-0006-1967-0639</orcidid><orcidid>https://orcid.org/0000-0001-9505-2628</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0009-0002-4530-1205</orcidid></search><sort><creationdate>202401</creationdate><title>Synthetic Datasets for Autonomous Driving: A Survey</title><author>Song, Zhihang ; He, Zimin ; Li, Xingyu ; Ma, Qiming ; Ming, Ruibo ; Mao, Zhiqi ; Pei, Huaxin ; Peng, Lihui ; Hu, Jianming ; Yao, Danya ; Zhang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b410f7825ac66da1306db36e18d6d6a0f70705d5903bf2ad406842aa431e287e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Autonomous driving</topic><topic>Autonomous vehicles</topic><topic>dataset evaluation</topic><topic>Datasets</topic><topic>Estimation</topic><topic>gap test</topic><topic>Surveys</topic><topic>Synthetic data</topic><topic>synthetic dataset</topic><topic>Task analysis</topic><topic>Testing</topic><topic>trustworthiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zhihang</creatorcontrib><creatorcontrib>He, Zimin</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><creatorcontrib>Ma, Qiming</creatorcontrib><creatorcontrib>Ming, Ruibo</creatorcontrib><creatorcontrib>Mao, Zhiqi</creatorcontrib><creatorcontrib>Pei, Huaxin</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Hu, Jianming</creatorcontrib><creatorcontrib>Yao, Danya</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Zhihang</au><au>He, Zimin</au><au>Li, Xingyu</au><au>Ma, Qiming</au><au>Ming, Ruibo</au><au>Mao, Zhiqi</au><au>Pei, Huaxin</au><au>Peng, Lihui</au><au>Hu, Jianming</au><au>Yao, Danya</au><au>Zhang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Datasets for Autonomous Driving: A Survey</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2024-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>1847</spage><epage>1864</epage><pages>1847-1864</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for the autonomous driving perception study. We also discuss the role that synthetic datasets play in the evaluation, gap test, and positive effect of autonomous driving-related algorithm testing, especially on trustworthiness and safety aspects, and provide examples of evaluation experiments. Finally, we discuss the limitations and future directions of synthetic datasets. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2023.3331024</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2818-2147</orcidid><orcidid>https://orcid.org/0009-0003-9432-8655</orcidid><orcidid>https://orcid.org/0000-0003-4815-2778</orcidid><orcidid>https://orcid.org/0009-0009-3662-0627</orcidid><orcidid>https://orcid.org/0000-0001-7363-6374</orcidid><orcidid>https://orcid.org/0000-0001-8065-7309</orcidid><orcidid>https://orcid.org/0000-0001-5032-6322</orcidid><orcidid>https://orcid.org/0009-0006-1967-0639</orcidid><orcidid>https://orcid.org/0000-0001-9505-2628</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0009-0002-4530-1205</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2024-01, Vol.9 (1), p.1847-1864
issn 2379-8858
2379-8904
language eng
recordid cdi_ieee_primary_10313052
source IEEE Electronic Library (IEL)
subjects Algorithms
Annotations
Autonomous driving
Autonomous vehicles
dataset evaluation
Datasets
Estimation
gap test
Surveys
Synthetic data
synthetic dataset
Task analysis
Testing
trustworthiness
title Synthetic Datasets for Autonomous Driving: A Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Datasets%20for%20Autonomous%20Driving:%20A%20Survey&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Song,%20Zhihang&rft.date=2024-01&rft.volume=9&rft.issue=1&rft.spage=1847&rft.epage=1864&rft.pages=1847-1864&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2023.3331024&rft_dat=%3Cproquest_RIE%3E2930962450%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930962450&rft_id=info:pmid/&rft_ieee_id=10313052&rfr_iscdi=true