Synthetic Datasets for Autonomous Driving: A Survey
Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. The...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2024-01, Vol.9 (1), p.1847-1864 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1864 |
---|---|
container_issue | 1 |
container_start_page | 1847 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 9 |
creator | Song, Zhihang He, Zimin Li, Xingyu Ma, Qiming Ming, Ruibo Mao, Zhiqi Pei, Huaxin Peng, Lihui Hu, Jianming Yao, Danya Zhang, Yi |
description | Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for the autonomous driving perception study. We also discuss the role that synthetic datasets play in the evaluation, gap test, and positive effect of autonomous driving-related algorithm testing, especially on trustworthiness and safety aspects, and provide examples of evaluation experiments. Finally, we discuss the limitations and future directions of synthetic datasets. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution. |
doi_str_mv | 10.1109/TIV.2023.3331024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10313052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10313052</ieee_id><sourcerecordid>2930962450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b410f7825ac66da1306db36e18d6d6a0f70705d5903bf2ad406842aa431e287e3</originalsourceid><addsrcrecordid>eNpNkE1rwzAMhs3YYKXrfYcdAjunk6XEsXcr7T4KhR3a7WrcxNlS1riznUL__VLawU4S6Hkl8TB2y2HMOaiH1fxjjIA0JiIOmF2wAVKhUqkgu_zrZS6v2SiEDQBwIVGCGjBaHtr4ZWNTJjMTTbAxJLXzyaSLrnVb14Vk5pt9034-JpNk2fm9Pdywq9p8Bzs61yF7f35aTV_TxdvLfDpZpCUqjOk641AXEnNTClEZTiCqNQnLZSUqYfoZFJBXuQJa12iqDITM0JiMuEVZWBqy-9PenXc_nQ1Rb1zn2_6kRkWgBGY59BScqNK7ELyt9c43W-MPmoM-2tG9HX20o892-sjdKdJYa__h1P-YI_0CthBeTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930962450</pqid></control><display><type>article</type><title>Synthetic Datasets for Autonomous Driving: A Survey</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Zhihang ; He, Zimin ; Li, Xingyu ; Ma, Qiming ; Ming, Ruibo ; Mao, Zhiqi ; Pei, Huaxin ; Peng, Lihui ; Hu, Jianming ; Yao, Danya ; Zhang, Yi</creator><creatorcontrib>Song, Zhihang ; He, Zimin ; Li, Xingyu ; Ma, Qiming ; Ming, Ruibo ; Mao, Zhiqi ; Pei, Huaxin ; Peng, Lihui ; Hu, Jianming ; Yao, Danya ; Zhang, Yi</creatorcontrib><description>Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for the autonomous driving perception study. We also discuss the role that synthetic datasets play in the evaluation, gap test, and positive effect of autonomous driving-related algorithm testing, especially on trustworthiness and safety aspects, and provide examples of evaluation experiments. Finally, we discuss the limitations and future directions of synthetic datasets. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2023.3331024</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Annotations ; Autonomous driving ; Autonomous vehicles ; dataset evaluation ; Datasets ; Estimation ; gap test ; Surveys ; Synthetic data ; synthetic dataset ; Task analysis ; Testing ; trustworthiness</subject><ispartof>IEEE transactions on intelligent vehicles, 2024-01, Vol.9 (1), p.1847-1864</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b410f7825ac66da1306db36e18d6d6a0f70705d5903bf2ad406842aa431e287e3</citedby><cites>FETCH-LOGICAL-c292t-b410f7825ac66da1306db36e18d6d6a0f70705d5903bf2ad406842aa431e287e3</cites><orcidid>0000-0002-2818-2147 ; 0009-0003-9432-8655 ; 0000-0003-4815-2778 ; 0009-0009-3662-0627 ; 0000-0001-7363-6374 ; 0000-0001-8065-7309 ; 0000-0001-5032-6322 ; 0009-0006-1967-0639 ; 0000-0001-9505-2628 ; 0000-0001-5526-866X ; 0009-0002-4530-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10313052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10313052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Zhihang</creatorcontrib><creatorcontrib>He, Zimin</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><creatorcontrib>Ma, Qiming</creatorcontrib><creatorcontrib>Ming, Ruibo</creatorcontrib><creatorcontrib>Mao, Zhiqi</creatorcontrib><creatorcontrib>Pei, Huaxin</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Hu, Jianming</creatorcontrib><creatorcontrib>Yao, Danya</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><title>Synthetic Datasets for Autonomous Driving: A Survey</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for the autonomous driving perception study. We also discuss the role that synthetic datasets play in the evaluation, gap test, and positive effect of autonomous driving-related algorithm testing, especially on trustworthiness and safety aspects, and provide examples of evaluation experiments. Finally, we discuss the limitations and future directions of synthetic datasets. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Autonomous driving</subject><subject>Autonomous vehicles</subject><subject>dataset evaluation</subject><subject>Datasets</subject><subject>Estimation</subject><subject>gap test</subject><subject>Surveys</subject><subject>Synthetic data</subject><subject>synthetic dataset</subject><subject>Task analysis</subject><subject>Testing</subject><subject>trustworthiness</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rwzAMhs3YYKXrfYcdAjunk6XEsXcr7T4KhR3a7WrcxNlS1riznUL__VLawU4S6Hkl8TB2y2HMOaiH1fxjjIA0JiIOmF2wAVKhUqkgu_zrZS6v2SiEDQBwIVGCGjBaHtr4ZWNTJjMTTbAxJLXzyaSLrnVb14Vk5pt9034-JpNk2fm9Pdywq9p8Bzs61yF7f35aTV_TxdvLfDpZpCUqjOk641AXEnNTClEZTiCqNQnLZSUqYfoZFJBXuQJa12iqDITM0JiMuEVZWBqy-9PenXc_nQ1Rb1zn2_6kRkWgBGY59BScqNK7ELyt9c43W-MPmoM-2tG9HX20o892-sjdKdJYa__h1P-YI_0CthBeTQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Song, Zhihang</creator><creator>He, Zimin</creator><creator>Li, Xingyu</creator><creator>Ma, Qiming</creator><creator>Ming, Ruibo</creator><creator>Mao, Zhiqi</creator><creator>Pei, Huaxin</creator><creator>Peng, Lihui</creator><creator>Hu, Jianming</creator><creator>Yao, Danya</creator><creator>Zhang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2818-2147</orcidid><orcidid>https://orcid.org/0009-0003-9432-8655</orcidid><orcidid>https://orcid.org/0000-0003-4815-2778</orcidid><orcidid>https://orcid.org/0009-0009-3662-0627</orcidid><orcidid>https://orcid.org/0000-0001-7363-6374</orcidid><orcidid>https://orcid.org/0000-0001-8065-7309</orcidid><orcidid>https://orcid.org/0000-0001-5032-6322</orcidid><orcidid>https://orcid.org/0009-0006-1967-0639</orcidid><orcidid>https://orcid.org/0000-0001-9505-2628</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0009-0002-4530-1205</orcidid></search><sort><creationdate>202401</creationdate><title>Synthetic Datasets for Autonomous Driving: A Survey</title><author>Song, Zhihang ; He, Zimin ; Li, Xingyu ; Ma, Qiming ; Ming, Ruibo ; Mao, Zhiqi ; Pei, Huaxin ; Peng, Lihui ; Hu, Jianming ; Yao, Danya ; Zhang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b410f7825ac66da1306db36e18d6d6a0f70705d5903bf2ad406842aa431e287e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Autonomous driving</topic><topic>Autonomous vehicles</topic><topic>dataset evaluation</topic><topic>Datasets</topic><topic>Estimation</topic><topic>gap test</topic><topic>Surveys</topic><topic>Synthetic data</topic><topic>synthetic dataset</topic><topic>Task analysis</topic><topic>Testing</topic><topic>trustworthiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zhihang</creatorcontrib><creatorcontrib>He, Zimin</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><creatorcontrib>Ma, Qiming</creatorcontrib><creatorcontrib>Ming, Ruibo</creatorcontrib><creatorcontrib>Mao, Zhiqi</creatorcontrib><creatorcontrib>Pei, Huaxin</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Hu, Jianming</creatorcontrib><creatorcontrib>Yao, Danya</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Zhihang</au><au>He, Zimin</au><au>Li, Xingyu</au><au>Ma, Qiming</au><au>Ming, Ruibo</au><au>Mao, Zhiqi</au><au>Pei, Huaxin</au><au>Peng, Lihui</au><au>Hu, Jianming</au><au>Yao, Danya</au><au>Zhang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Datasets for Autonomous Driving: A Survey</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2024-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>1847</spage><epage>1864</epage><pages>1847-1864</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for the autonomous driving perception study. We also discuss the role that synthetic datasets play in the evaluation, gap test, and positive effect of autonomous driving-related algorithm testing, especially on trustworthiness and safety aspects, and provide examples of evaluation experiments. Finally, we discuss the limitations and future directions of synthetic datasets. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2023.3331024</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2818-2147</orcidid><orcidid>https://orcid.org/0009-0003-9432-8655</orcidid><orcidid>https://orcid.org/0000-0003-4815-2778</orcidid><orcidid>https://orcid.org/0009-0009-3662-0627</orcidid><orcidid>https://orcid.org/0000-0001-7363-6374</orcidid><orcidid>https://orcid.org/0000-0001-8065-7309</orcidid><orcidid>https://orcid.org/0000-0001-5032-6322</orcidid><orcidid>https://orcid.org/0009-0006-1967-0639</orcidid><orcidid>https://orcid.org/0000-0001-9505-2628</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0009-0002-4530-1205</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2024-01, Vol.9 (1), p.1847-1864 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_ieee_primary_10313052 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Annotations Autonomous driving Autonomous vehicles dataset evaluation Datasets Estimation gap test Surveys Synthetic data synthetic dataset Task analysis Testing trustworthiness |
title | Synthetic Datasets for Autonomous Driving: A Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Datasets%20for%20Autonomous%20Driving:%20A%20Survey&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Song,%20Zhihang&rft.date=2024-01&rft.volume=9&rft.issue=1&rft.spage=1847&rft.epage=1864&rft.pages=1847-1864&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2023.3331024&rft_dat=%3Cproquest_RIE%3E2930962450%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930962450&rft_id=info:pmid/&rft_ieee_id=10313052&rfr_iscdi=true |