Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning
Hyperspectral images (HSI) provide a rich source of data for remote sensing applications, offering extensive spectral data about the Earth's surface. Object detection in HSI remains a challenging process with various application areas in environmental monitoring, agriculture, and geospatial ana...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Mahgoub, Hany Albraikan, Amani Abdulrahman Othman, Kamal M. Salama, Ahmed S. Yaseen, Ishfaq Ibrahim, Sara Saadeldeen |
description | Hyperspectral images (HSI) provide a rich source of data for remote sensing applications, offering extensive spectral data about the Earth's surface. Object detection in HSI remains a challenging process with various application areas in environmental monitoring, agriculture, and geospatial analysis. The development of deep learning (DL) models for HSI object detection paves the way for new opportunities in advanced remote sensing analysis. DL models enable the automated and reliable detection of target objects. Particularly, convolutional neural networks (CNNs) can handle the high-dimensional nature of hyperspectral data and efficiently learn complex relationships among spectral patterns and object classes. This results in improved detection performance and reduces the need for manual feature engineering. Therefore, this study presents a Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning (HSOD-JSODL) technique for Enhanced Remote Sensing Analysis. The aim of the HSOD-JSODL method lies in the effectual recognition of interested objects in the HSI using the DL model. To achieve this, the HSOD-JSODL technique employs EfficientDet object detector to recognize various kinds of objects in the HSI. EfficientDet is a recently developed object detector which integrates efficiency via a compound scaling approach and efficient network design. For the classification of detected objects, the HSOD-JSODL technique uses a deep belief network (DBN) classifier model. To improve the object classification results of the DBN model, the JSO algorithm is applied as a hyperparameter optimizer. The simulation analysis of the HSOD-JSODL technique is examined on the HSI dataset, and the outcomes are examined under various measures. The simulation values portrayed the betterment of the HSOD-JSODL technique over compared methods. |
doi_str_mv | 10.1109/ACCESS.2023.3331156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10311567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10311567</ieee_id><doaj_id>oai_doaj_org_article_f7ba3966770b4b41a8d4ccbd59fe805e</doaj_id><sourcerecordid>2890993069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-81fa125b41a2d9841980946c042889d41c99471b7d92df0c23e8c8e38c44fac83</originalsourceid><addsrcrecordid>eNpNkU1PwkAQhhujiQT5BXrYxDO4X213j4goGBIO6NXNdjuFJaWtuyUGf70LJYa5zGRmnncmeaPonuARIVg-jSeT6Wo1opiyEWOMkDi5inqUJHLIYpZcX9S30cD7LQ4hQitOe9HX7NCA8w2Y1ukSLbNtqNALtCHZukJ7b6s1era1rXxjHeToHcryUFi_QSvQzmzQsmntzv6CQz-23QQWGrQIoyqQd9FNoUsPg3PuR5-v04_JbLhYvs0n48XQsFi2Q0EKTWiccaJpLgUnUmDJE4M5FULmnBgpeUqyNJc0L7ChDIQRwIThvNBGsH4073TzWm9V4-xOu4OqtVWnRu3WSrvWmhJUkWaaySRJU5zx40WRc2OyPJYFCBxD0HrstBpXf-_Bt2pb710V3ldUSCwlw4kMW6zbMq723kHxf5VgdfRFdb6ooy_q7EugHjrKAsAFcZqm7A-wBolb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890993069</pqid></control><display><type>article</type><title>Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mahgoub, Hany ; Albraikan, Amani Abdulrahman ; Othman, Kamal M. ; Salama, Ahmed S. ; Yaseen, Ishfaq ; Ibrahim, Sara Saadeldeen</creator><creatorcontrib>Mahgoub, Hany ; Albraikan, Amani Abdulrahman ; Othman, Kamal M. ; Salama, Ahmed S. ; Yaseen, Ishfaq ; Ibrahim, Sara Saadeldeen</creatorcontrib><description>Hyperspectral images (HSI) provide a rich source of data for remote sensing applications, offering extensive spectral data about the Earth's surface. Object detection in HSI remains a challenging process with various application areas in environmental monitoring, agriculture, and geospatial analysis. The development of deep learning (DL) models for HSI object detection paves the way for new opportunities in advanced remote sensing analysis. DL models enable the automated and reliable detection of target objects. Particularly, convolutional neural networks (CNNs) can handle the high-dimensional nature of hyperspectral data and efficiently learn complex relationships among spectral patterns and object classes. This results in improved detection performance and reduces the need for manual feature engineering. Therefore, this study presents a Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning (HSOD-JSODL) technique for Enhanced Remote Sensing Analysis. The aim of the HSOD-JSODL method lies in the effectual recognition of interested objects in the HSI using the DL model. To achieve this, the HSOD-JSODL technique employs EfficientDet object detector to recognize various kinds of objects in the HSI. EfficientDet is a recently developed object detector which integrates efficiency via a compound scaling approach and efficient network design. For the classification of detected objects, the HSOD-JSODL technique uses a deep belief network (DBN) classifier model. To improve the object classification results of the DBN model, the JSO algorithm is applied as a hyperparameter optimizer. The simulation analysis of the HSOD-JSODL technique is examined on the HSI dataset, and the outcomes are examined under various measures. The simulation values portrayed the betterment of the HSOD-JSODL technique over compared methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3331156</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Belief networks ; Classification ; Computer simulation ; Convolution ; Convolutional neural networks ; Deep learning ; Detectors ; Earth surface ; Environmental monitoring ; Feature extraction ; Hyperspectral imaging ; Jellyfish search optimizer ; Machine learning ; Network design ; Object detector ; Object recognition ; Remote sensing ; Search problems ; Spatial analysis ; Target detection</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-81fa125b41a2d9841980946c042889d41c99471b7d92df0c23e8c8e38c44fac83</cites><orcidid>0009-0004-1982-5851 ; 0000-0003-0217-0751 ; 0000-0002-6949-1122 ; 0000-0002-1066-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10311567$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Mahgoub, Hany</creatorcontrib><creatorcontrib>Albraikan, Amani Abdulrahman</creatorcontrib><creatorcontrib>Othman, Kamal M.</creatorcontrib><creatorcontrib>Salama, Ahmed S.</creatorcontrib><creatorcontrib>Yaseen, Ishfaq</creatorcontrib><creatorcontrib>Ibrahim, Sara Saadeldeen</creatorcontrib><title>Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Hyperspectral images (HSI) provide a rich source of data for remote sensing applications, offering extensive spectral data about the Earth's surface. Object detection in HSI remains a challenging process with various application areas in environmental monitoring, agriculture, and geospatial analysis. The development of deep learning (DL) models for HSI object detection paves the way for new opportunities in advanced remote sensing analysis. DL models enable the automated and reliable detection of target objects. Particularly, convolutional neural networks (CNNs) can handle the high-dimensional nature of hyperspectral data and efficiently learn complex relationships among spectral patterns and object classes. This results in improved detection performance and reduces the need for manual feature engineering. Therefore, this study presents a Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning (HSOD-JSODL) technique for Enhanced Remote Sensing Analysis. The aim of the HSOD-JSODL method lies in the effectual recognition of interested objects in the HSI using the DL model. To achieve this, the HSOD-JSODL technique employs EfficientDet object detector to recognize various kinds of objects in the HSI. EfficientDet is a recently developed object detector which integrates efficiency via a compound scaling approach and efficient network design. For the classification of detected objects, the HSOD-JSODL technique uses a deep belief network (DBN) classifier model. To improve the object classification results of the DBN model, the JSO algorithm is applied as a hyperparameter optimizer. The simulation analysis of the HSOD-JSODL technique is examined on the HSI dataset, and the outcomes are examined under various measures. The simulation values portrayed the betterment of the HSOD-JSODL technique over compared methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Belief networks</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Earth surface</subject><subject>Environmental monitoring</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Jellyfish search optimizer</subject><subject>Machine learning</subject><subject>Network design</subject><subject>Object detector</subject><subject>Object recognition</subject><subject>Remote sensing</subject><subject>Search problems</subject><subject>Spatial analysis</subject><subject>Target detection</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwkAQhhujiQT5BXrYxDO4X213j4goGBIO6NXNdjuFJaWtuyUGf70LJYa5zGRmnncmeaPonuARIVg-jSeT6Wo1opiyEWOMkDi5inqUJHLIYpZcX9S30cD7LQ4hQitOe9HX7NCA8w2Y1ukSLbNtqNALtCHZukJ7b6s1era1rXxjHeToHcryUFi_QSvQzmzQsmntzv6CQz-23QQWGrQIoyqQd9FNoUsPg3PuR5-v04_JbLhYvs0n48XQsFi2Q0EKTWiccaJpLgUnUmDJE4M5FULmnBgpeUqyNJc0L7ChDIQRwIThvNBGsH4073TzWm9V4-xOu4OqtVWnRu3WSrvWmhJUkWaaySRJU5zx40WRc2OyPJYFCBxD0HrstBpXf-_Bt2pb710V3ldUSCwlw4kMW6zbMq723kHxf5VgdfRFdb6ooy_q7EugHjrKAsAFcZqm7A-wBolb</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mahgoub, Hany</creator><creator>Albraikan, Amani Abdulrahman</creator><creator>Othman, Kamal M.</creator><creator>Salama, Ahmed S.</creator><creator>Yaseen, Ishfaq</creator><creator>Ibrahim, Sara Saadeldeen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-1982-5851</orcidid><orcidid>https://orcid.org/0000-0003-0217-0751</orcidid><orcidid>https://orcid.org/0000-0002-6949-1122</orcidid><orcidid>https://orcid.org/0000-0002-1066-8261</orcidid></search><sort><creationdate>20230101</creationdate><title>Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning</title><author>Mahgoub, Hany ; Albraikan, Amani Abdulrahman ; Othman, Kamal M. ; Salama, Ahmed S. ; Yaseen, Ishfaq ; Ibrahim, Sara Saadeldeen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-81fa125b41a2d9841980946c042889d41c99471b7d92df0c23e8c8e38c44fac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Belief networks</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Earth surface</topic><topic>Environmental monitoring</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Jellyfish search optimizer</topic><topic>Machine learning</topic><topic>Network design</topic><topic>Object detector</topic><topic>Object recognition</topic><topic>Remote sensing</topic><topic>Search problems</topic><topic>Spatial analysis</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahgoub, Hany</creatorcontrib><creatorcontrib>Albraikan, Amani Abdulrahman</creatorcontrib><creatorcontrib>Othman, Kamal M.</creatorcontrib><creatorcontrib>Salama, Ahmed S.</creatorcontrib><creatorcontrib>Yaseen, Ishfaq</creatorcontrib><creatorcontrib>Ibrahim, Sara Saadeldeen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahgoub, Hany</au><au>Albraikan, Amani Abdulrahman</au><au>Othman, Kamal M.</au><au>Salama, Ahmed S.</au><au>Yaseen, Ishfaq</au><au>Ibrahim, Sara Saadeldeen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Hyperspectral images (HSI) provide a rich source of data for remote sensing applications, offering extensive spectral data about the Earth's surface. Object detection in HSI remains a challenging process with various application areas in environmental monitoring, agriculture, and geospatial analysis. The development of deep learning (DL) models for HSI object detection paves the way for new opportunities in advanced remote sensing analysis. DL models enable the automated and reliable detection of target objects. Particularly, convolutional neural networks (CNNs) can handle the high-dimensional nature of hyperspectral data and efficiently learn complex relationships among spectral patterns and object classes. This results in improved detection performance and reduces the need for manual feature engineering. Therefore, this study presents a Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning (HSOD-JSODL) technique for Enhanced Remote Sensing Analysis. The aim of the HSOD-JSODL method lies in the effectual recognition of interested objects in the HSI using the DL model. To achieve this, the HSOD-JSODL technique employs EfficientDet object detector to recognize various kinds of objects in the HSI. EfficientDet is a recently developed object detector which integrates efficiency via a compound scaling approach and efficient network design. For the classification of detected objects, the HSOD-JSODL technique uses a deep belief network (DBN) classifier model. To improve the object classification results of the DBN model, the JSO algorithm is applied as a hyperparameter optimizer. The simulation analysis of the HSOD-JSODL technique is examined on the HSI dataset, and the outcomes are examined under various measures. The simulation values portrayed the betterment of the HSOD-JSODL technique over compared methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3331156</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0004-1982-5851</orcidid><orcidid>https://orcid.org/0000-0003-0217-0751</orcidid><orcidid>https://orcid.org/0000-0002-6949-1122</orcidid><orcidid>https://orcid.org/0000-0002-1066-8261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10311567 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial neural networks Belief networks Classification Computer simulation Convolution Convolutional neural networks Deep learning Detectors Earth surface Environmental monitoring Feature extraction Hyperspectral imaging Jellyfish search optimizer Machine learning Network design Object detector Object recognition Remote sensing Search problems Spatial analysis Target detection |
title | Hyperspectral Object Detection using Bioinspired Jellyfish Search Optimizer with Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Object%20Detection%20using%20Bioinspired%20Jellyfish%20Search%20Optimizer%20with%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Mahgoub,%20Hany&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3331156&rft_dat=%3Cproquest_ieee_%3E2890993069%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890993069&rft_id=info:pmid/&rft_ieee_id=10311567&rft_doaj_id=oai_doaj_org_article_f7ba3966770b4b41a8d4ccbd59fe805e&rfr_iscdi=true |