A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection
Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or dec...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2024-05, Vol.15 (3), p.3178-3192 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3192 |
---|---|
container_issue | 3 |
container_start_page | 3178 |
container_title | IEEE transactions on smart grid |
container_volume | 15 |
creator | Jiao, Runhai Han, Zhuoting Liu, Xuan Zhou, Changyu Du, Min |
description | Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment. |
doi_str_mv | 10.1109/TSG.2023.3325390 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10304287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10304287</ieee_id><sourcerecordid>3044622477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-1d1b27a81489ce964afd59986bbf6929ef689ffe82ad8530bf8cb283bc89cdcb3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr3LlwEXE_NYx7JslZbhYqFVlyGTB6aWic1SRH_vSlTxLu5B-53zoUDwCVGY4wRv1mv5mOCCB1TSirK0QkYYF7ygqIan_7pip6DUYwblIdSWhM-AGIC50FqZ7pU3MpoNHx1nYZL_20CnPlglIzJdW9wkpJUH_DJpHev4dR30WkTDpeld12CMrvuXOaT8x1cmW2vLsCZldtoRsc9BC-z-_X0oVg8zx-nk0WhSFmlAmvckkYyXDKuDK9LaXXFOavb1taccGNrxq01jEjNKopay1RLGG1V5rVq6RBc97m74L_2Jiax8fvQ5ZeCorKsCSmbJlOop1TwMQZjxS64Txl-BEbi0KTITYpDk-LYZLZc9RZnjPmH51TCGvoLsm1vXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044622477</pqid></control><display><type>article</type><title>A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Jiao, Runhai ; Han, Zhuoting ; Liu, Xuan ; Zhou, Changyu ; Du, Min</creator><creatorcontrib>Jiao, Runhai ; Han, Zhuoting ; Liu, Xuan ; Zhou, Changyu ; Du, Min</creatorcontrib><description>Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3325390</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>attack direction judgment ; Data models ; Forecasting ; gradient-based attack ; high-stealth attack ; Load modeling ; Machine learning ; Mathematical models ; Predictive models ; Wind farms ; Wind power ; Wind power forecasting ; Wind power generation ; Wind speed</subject><ispartof>IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3178-3192</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-1d1b27a81489ce964afd59986bbf6929ef689ffe82ad8530bf8cb283bc89cdcb3</cites><orcidid>0000-0003-3759-4175 ; 0000-0002-0802-2955 ; 0000-0003-2565-5292 ; 0009-0003-7869-9683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10304287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10304287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiao, Runhai</creatorcontrib><creatorcontrib>Han, Zhuoting</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Zhou, Changyu</creatorcontrib><creatorcontrib>Du, Min</creatorcontrib><title>A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment.</description><subject>attack direction judgment</subject><subject>Data models</subject><subject>Forecasting</subject><subject>gradient-based attack</subject><subject>high-stealth attack</subject><subject>Load modeling</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Predictive models</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power forecasting</subject><subject>Wind power generation</subject><subject>Wind speed</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWGr3LlwEXE_NYx7JslZbhYqFVlyGTB6aWic1SRH_vSlTxLu5B-53zoUDwCVGY4wRv1mv5mOCCB1TSirK0QkYYF7ygqIan_7pip6DUYwblIdSWhM-AGIC50FqZ7pU3MpoNHx1nYZL_20CnPlglIzJdW9wkpJUH_DJpHev4dR30WkTDpeld12CMrvuXOaT8x1cmW2vLsCZldtoRsc9BC-z-_X0oVg8zx-nk0WhSFmlAmvckkYyXDKuDK9LaXXFOavb1taccGNrxq01jEjNKopay1RLGG1V5rVq6RBc97m74L_2Jiax8fvQ5ZeCorKsCSmbJlOop1TwMQZjxS64Txl-BEbi0KTITYpDk-LYZLZc9RZnjPmH51TCGvoLsm1vXg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Jiao, Runhai</creator><creator>Han, Zhuoting</creator><creator>Liu, Xuan</creator><creator>Zhou, Changyu</creator><creator>Du, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3759-4175</orcidid><orcidid>https://orcid.org/0000-0002-0802-2955</orcidid><orcidid>https://orcid.org/0000-0003-2565-5292</orcidid><orcidid>https://orcid.org/0009-0003-7869-9683</orcidid></search><sort><creationdate>20240501</creationdate><title>A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection</title><author>Jiao, Runhai ; Han, Zhuoting ; Liu, Xuan ; Zhou, Changyu ; Du, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-1d1b27a81489ce964afd59986bbf6929ef689ffe82ad8530bf8cb283bc89cdcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>attack direction judgment</topic><topic>Data models</topic><topic>Forecasting</topic><topic>gradient-based attack</topic><topic>high-stealth attack</topic><topic>Load modeling</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Predictive models</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power forecasting</topic><topic>Wind power generation</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Runhai</creatorcontrib><creatorcontrib>Han, Zhuoting</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Zhou, Changyu</creatorcontrib><creatorcontrib>Du, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiao, Runhai</au><au>Han, Zhuoting</au><au>Liu, Xuan</au><au>Zhou, Changyu</au><au>Du, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>3178</spage><epage>3192</epage><pages>3178-3192</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3325390</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3759-4175</orcidid><orcidid>https://orcid.org/0000-0002-0802-2955</orcidid><orcidid>https://orcid.org/0000-0003-2565-5292</orcidid><orcidid>https://orcid.org/0009-0003-7869-9683</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3178-3192 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_10304287 |
source | IEEE Electronic Library (IEL) |
subjects | attack direction judgment Data models Forecasting gradient-based attack high-stealth attack Load modeling Machine learning Mathematical models Predictive models Wind farms Wind power Wind power forecasting Wind power generation Wind speed |
title | A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gradient-Based%20Wind%20Power%20Forecasting%20Attack%20Method%20Considering%20Point%20and%20Direction%20Selection&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Jiao,%20Runhai&rft.date=2024-05-01&rft.volume=15&rft.issue=3&rft.spage=3178&rft.epage=3192&rft.pages=3178-3192&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3325390&rft_dat=%3Cproquest_RIE%3E3044622477%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044622477&rft_id=info:pmid/&rft_ieee_id=10304287&rfr_iscdi=true |