A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection

Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2024-05, Vol.15 (3), p.3178-3192
Hauptverfasser: Jiao, Runhai, Han, Zhuoting, Liu, Xuan, Zhou, Changyu, Du, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3192
container_issue 3
container_start_page 3178
container_title IEEE transactions on smart grid
container_volume 15
creator Jiao, Runhai
Han, Zhuoting
Liu, Xuan
Zhou, Changyu
Du, Min
description Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment.
doi_str_mv 10.1109/TSG.2023.3325390
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10304287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10304287</ieee_id><sourcerecordid>3044622477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-1d1b27a81489ce964afd59986bbf6929ef689ffe82ad8530bf8cb283bc89cdcb3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr3LlwEXE_NYx7JslZbhYqFVlyGTB6aWic1SRH_vSlTxLu5B-53zoUDwCVGY4wRv1mv5mOCCB1TSirK0QkYYF7ygqIan_7pip6DUYwblIdSWhM-AGIC50FqZ7pU3MpoNHx1nYZL_20CnPlglIzJdW9wkpJUH_DJpHev4dR30WkTDpeld12CMrvuXOaT8x1cmW2vLsCZldtoRsc9BC-z-_X0oVg8zx-nk0WhSFmlAmvckkYyXDKuDK9LaXXFOavb1taccGNrxq01jEjNKopay1RLGG1V5rVq6RBc97m74L_2Jiax8fvQ5ZeCorKsCSmbJlOop1TwMQZjxS64Txl-BEbi0KTITYpDk-LYZLZc9RZnjPmH51TCGvoLsm1vXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044622477</pqid></control><display><type>article</type><title>A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Jiao, Runhai ; Han, Zhuoting ; Liu, Xuan ; Zhou, Changyu ; Du, Min</creator><creatorcontrib>Jiao, Runhai ; Han, Zhuoting ; Liu, Xuan ; Zhou, Changyu ; Du, Min</creatorcontrib><description>Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3325390</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>attack direction judgment ; Data models ; Forecasting ; gradient-based attack ; high-stealth attack ; Load modeling ; Machine learning ; Mathematical models ; Predictive models ; Wind farms ; Wind power ; Wind power forecasting ; Wind power generation ; Wind speed</subject><ispartof>IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3178-3192</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-1d1b27a81489ce964afd59986bbf6929ef689ffe82ad8530bf8cb283bc89cdcb3</cites><orcidid>0000-0003-3759-4175 ; 0000-0002-0802-2955 ; 0000-0003-2565-5292 ; 0009-0003-7869-9683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10304287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10304287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiao, Runhai</creatorcontrib><creatorcontrib>Han, Zhuoting</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Zhou, Changyu</creatorcontrib><creatorcontrib>Du, Min</creatorcontrib><title>A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment.</description><subject>attack direction judgment</subject><subject>Data models</subject><subject>Forecasting</subject><subject>gradient-based attack</subject><subject>high-stealth attack</subject><subject>Load modeling</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Predictive models</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power forecasting</subject><subject>Wind power generation</subject><subject>Wind speed</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWGr3LlwEXE_NYx7JslZbhYqFVlyGTB6aWic1SRH_vSlTxLu5B-53zoUDwCVGY4wRv1mv5mOCCB1TSirK0QkYYF7ygqIan_7pip6DUYwblIdSWhM-AGIC50FqZ7pU3MpoNHx1nYZL_20CnPlglIzJdW9wkpJUH_DJpHev4dR30WkTDpeld12CMrvuXOaT8x1cmW2vLsCZldtoRsc9BC-z-_X0oVg8zx-nk0WhSFmlAmvckkYyXDKuDK9LaXXFOavb1taccGNrxq01jEjNKopay1RLGG1V5rVq6RBc97m74L_2Jiax8fvQ5ZeCorKsCSmbJlOop1TwMQZjxS64Txl-BEbi0KTITYpDk-LYZLZc9RZnjPmH51TCGvoLsm1vXg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Jiao, Runhai</creator><creator>Han, Zhuoting</creator><creator>Liu, Xuan</creator><creator>Zhou, Changyu</creator><creator>Du, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3759-4175</orcidid><orcidid>https://orcid.org/0000-0002-0802-2955</orcidid><orcidid>https://orcid.org/0000-0003-2565-5292</orcidid><orcidid>https://orcid.org/0009-0003-7869-9683</orcidid></search><sort><creationdate>20240501</creationdate><title>A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection</title><author>Jiao, Runhai ; Han, Zhuoting ; Liu, Xuan ; Zhou, Changyu ; Du, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-1d1b27a81489ce964afd59986bbf6929ef689ffe82ad8530bf8cb283bc89cdcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>attack direction judgment</topic><topic>Data models</topic><topic>Forecasting</topic><topic>gradient-based attack</topic><topic>high-stealth attack</topic><topic>Load modeling</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Predictive models</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power forecasting</topic><topic>Wind power generation</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Runhai</creatorcontrib><creatorcontrib>Han, Zhuoting</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Zhou, Changyu</creatorcontrib><creatorcontrib>Du, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiao, Runhai</au><au>Han, Zhuoting</au><au>Liu, Xuan</au><au>Zhou, Changyu</au><au>Du, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>3178</spage><epage>3192</epage><pages>3178-3192</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Machine learning methods have been prevailing in wind power forecasting, while these data-driven based methods are susceptible to cyberattacks. Typical attack methods inject malicious data into influence factors according to the gradient direction of the forecasting model to randomly increase or decrease forecasting results, ignoring the number of attacks and attack effect. In this paper, an attack sample selection model is proposed to select vulnerability sample points for attack in order to reduce the number of attacks. At the same time, an attack direction judgment model is developed to launch the attack in the correct gradient direction to maximize the attack effect. Moreover, the effectiveness of the proposed approach is validated on two public wind power datasets and nine typical machine learning based forecasting models such as ANN, ENN, RNN, LSTM, GRU, BiLSTM, BiGRU, CNN and TCN. Compared with the existing gradient-based attack methods, the proposed attack method increases MAPE values of the nine models by about 9% on average while improving the attack concealment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3325390</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3759-4175</orcidid><orcidid>https://orcid.org/0000-0002-0802-2955</orcidid><orcidid>https://orcid.org/0000-0003-2565-5292</orcidid><orcidid>https://orcid.org/0009-0003-7869-9683</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3178-3192
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_10304287
source IEEE Electronic Library (IEL)
subjects attack direction judgment
Data models
Forecasting
gradient-based attack
high-stealth attack
Load modeling
Machine learning
Mathematical models
Predictive models
Wind farms
Wind power
Wind power forecasting
Wind power generation
Wind speed
title A Gradient-Based Wind Power Forecasting Attack Method Considering Point and Direction Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gradient-Based%20Wind%20Power%20Forecasting%20Attack%20Method%20Considering%20Point%20and%20Direction%20Selection&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Jiao,%20Runhai&rft.date=2024-05-01&rft.volume=15&rft.issue=3&rft.spage=3178&rft.epage=3192&rft.pages=3178-3192&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3325390&rft_dat=%3Cproquest_RIE%3E3044622477%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044622477&rft_id=info:pmid/&rft_ieee_id=10304287&rfr_iscdi=true