Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology

This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.122221-122230
Hauptverfasser: Zhu, Wenbin, Gu, Hong, Fan, Zhenhong, Zhu, Xiaochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122230
container_issue
container_start_page 122221
container_title IEEE access
container_volume 11
creator Zhu, Wenbin
Gu, Hong
Fan, Zhenhong
Zhu, Xiaochun
description This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converting stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating segmentation results under various threshold parameters. By establishing persistence boundaries in these diagrams, the most significant regions are identified, enabling the determination of robust segmentation thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the proposed method, with low error rates and superior performance compared to other segmentation methods. The research holds potential for application in autonomous driving systems.
doi_str_mv 10.1109/ACCESS.2023.3329056
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10304189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10304189</ieee_id><doaj_id>oai_doaj_org_article_79c320482e82400bb02e6e7bd1a53b7c</doaj_id><sourcerecordid>2887113882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e564a6a3b7f5509f8ba77e2dc225b9b36ac588edd03a171c30e35b1a3643e7953</originalsourceid><addsrcrecordid>eNpNUU1vGyEQXVWt1CjJL2gPSD3bBWZZ4JhaaWMpVao4OSNYxmusXeMCPqS_viQbRZnLfL33ZqTXNF8YXTJG9fer1ep6s1lyymEJwDUV3YfmjLNOL0BA9_Fd_bm5zHlPa6g6EvKsOd5Hd8qFbAomjOQ-Wk_Wkx2QbHCY8FBsCfFAHnM4DORhlzDv4ujrcsT-ZXN3LGEK_2bYbyy76MkPm9GT2v_BlEMuVYbcxCmOcXi6aD5t7Zjx8jWfN48_rx9WN4vbu1_r1dXtogehywJF19rOgpNbIajeKmelRO57zoXTDjrbC6XQewqWSdYDRRCOWehaQKkFnDfrWddHuzfHFCabnky0wbwMYhqMTSX0Ixqpe-C0VRwVbyl1jnLsUDrPrKgP9FXr26x1TPHvCXMx-3hKh_q-4UpJxkApXlEwo_oUc064fbvKqHl2ysxOmWenzKtTlfV1ZgVEfMcA2jKl4T9Vs4_u</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887113882</pqid></control><display><type>article</type><title>Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Wenbin ; Gu, Hong ; Fan, Zhenhong ; Zhu, Xiaochun</creator><creatorcontrib>Zhu, Wenbin ; Gu, Hong ; Fan, Zhenhong ; Zhu, Xiaochun</creatorcontrib><description>This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converting stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating segmentation results under various threshold parameters. By establishing persistence boundaries in these diagrams, the most significant regions are identified, enabling the determination of robust segmentation thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the proposed method, with low error rates and superior performance compared to other segmentation methods. The research holds potential for application in autonomous driving systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3329056</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Disparity map ; Fitting ; Homology ; Image segmentation ; Optimization ; persistent homology ; Roads ; Robustness ; Target recognition ; Three-dimensional displays ; threshold selection optimization ; Thresholding (Imaging) ; Thresholds ; Vehicle dynamics ; Visualization</subject><ispartof>IEEE access, 2023, Vol.11, p.122221-122230</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e564a6a3b7f5509f8ba77e2dc225b9b36ac588edd03a171c30e35b1a3643e7953</cites><orcidid>0000-0002-2485-5973 ; 0000-0002-4230-9968 ; 0000-0003-0877-7706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10304189$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2106,4028,27642,27932,27933,27934,54942</link.rule.ids></links><search><creatorcontrib>Zhu, Wenbin</creatorcontrib><creatorcontrib>Gu, Hong</creatorcontrib><creatorcontrib>Fan, Zhenhong</creatorcontrib><creatorcontrib>Zhu, Xiaochun</creatorcontrib><title>Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converting stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating segmentation results under various threshold parameters. By establishing persistence boundaries in these diagrams, the most significant regions are identified, enabling the determination of robust segmentation thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the proposed method, with low error rates and superior performance compared to other segmentation methods. The research holds potential for application in autonomous driving systems.</description><subject>Cameras</subject><subject>Disparity map</subject><subject>Fitting</subject><subject>Homology</subject><subject>Image segmentation</subject><subject>Optimization</subject><subject>persistent homology</subject><subject>Roads</subject><subject>Robustness</subject><subject>Target recognition</subject><subject>Three-dimensional displays</subject><subject>threshold selection optimization</subject><subject>Thresholding (Imaging)</subject><subject>Thresholds</subject><subject>Vehicle dynamics</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vGyEQXVWt1CjJL2gPSD3bBWZZ4JhaaWMpVao4OSNYxmusXeMCPqS_viQbRZnLfL33ZqTXNF8YXTJG9fer1ep6s1lyymEJwDUV3YfmjLNOL0BA9_Fd_bm5zHlPa6g6EvKsOd5Hd8qFbAomjOQ-Wk_Wkx2QbHCY8FBsCfFAHnM4DORhlzDv4ujrcsT-ZXN3LGEK_2bYbyy76MkPm9GT2v_BlEMuVYbcxCmOcXi6aD5t7Zjx8jWfN48_rx9WN4vbu1_r1dXtogehywJF19rOgpNbIajeKmelRO57zoXTDjrbC6XQewqWSdYDRRCOWehaQKkFnDfrWddHuzfHFCabnky0wbwMYhqMTSX0Ixqpe-C0VRwVbyl1jnLsUDrPrKgP9FXr26x1TPHvCXMx-3hKh_q-4UpJxkApXlEwo_oUc064fbvKqHl2ysxOmWenzKtTlfV1ZgVEfMcA2jKl4T9Vs4_u</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhu, Wenbin</creator><creator>Gu, Hong</creator><creator>Fan, Zhenhong</creator><creator>Zhu, Xiaochun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2485-5973</orcidid><orcidid>https://orcid.org/0000-0002-4230-9968</orcidid><orcidid>https://orcid.org/0000-0003-0877-7706</orcidid></search><sort><creationdate>2023</creationdate><title>Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology</title><author>Zhu, Wenbin ; Gu, Hong ; Fan, Zhenhong ; Zhu, Xiaochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e564a6a3b7f5509f8ba77e2dc225b9b36ac588edd03a171c30e35b1a3643e7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Disparity map</topic><topic>Fitting</topic><topic>Homology</topic><topic>Image segmentation</topic><topic>Optimization</topic><topic>persistent homology</topic><topic>Roads</topic><topic>Robustness</topic><topic>Target recognition</topic><topic>Three-dimensional displays</topic><topic>threshold selection optimization</topic><topic>Thresholding (Imaging)</topic><topic>Thresholds</topic><topic>Vehicle dynamics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wenbin</creatorcontrib><creatorcontrib>Gu, Hong</creatorcontrib><creatorcontrib>Fan, Zhenhong</creatorcontrib><creatorcontrib>Zhu, Xiaochun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wenbin</au><au>Gu, Hong</au><au>Fan, Zhenhong</au><au>Zhu, Xiaochun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>122221</spage><epage>122230</epage><pages>122221-122230</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converting stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating segmentation results under various threshold parameters. By establishing persistence boundaries in these diagrams, the most significant regions are identified, enabling the determination of robust segmentation thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the proposed method, with low error rates and superior performance compared to other segmentation methods. The research holds potential for application in autonomous driving systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3329056</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2485-5973</orcidid><orcidid>https://orcid.org/0000-0002-4230-9968</orcidid><orcidid>https://orcid.org/0000-0003-0877-7706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.122221-122230
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10304189
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cameras
Disparity map
Fitting
Homology
Image segmentation
Optimization
persistent homology
Roads
Robustness
Target recognition
Three-dimensional displays
threshold selection optimization
Thresholding (Imaging)
Thresholds
Vehicle dynamics
Visualization
title Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T02%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Stereo%20Road%20Image%20Segmentation%20Using%20Threshold%20Selection%20Optimization%20Method%20Based%20on%20Persistent%20Homology&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Wenbin&rft.date=2023&rft.volume=11&rft.spage=122221&rft.epage=122230&rft.pages=122221-122230&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3329056&rft_dat=%3Cproquest_ieee_%3E2887113882%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887113882&rft_id=info:pmid/&rft_ieee_id=10304189&rft_doaj_id=oai_doaj_org_article_79c320482e82400bb02e6e7bd1a53b7c&rfr_iscdi=true