Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology
This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converti...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.122221-122230 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122230 |
---|---|
container_issue | |
container_start_page | 122221 |
container_title | IEEE access |
container_volume | 11 |
creator | Zhu, Wenbin Gu, Hong Fan, Zhenhong Zhu, Xiaochun |
description | This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converting stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating segmentation results under various threshold parameters. By establishing persistence boundaries in these diagrams, the most significant regions are identified, enabling the determination of robust segmentation thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the proposed method, with low error rates and superior performance compared to other segmentation methods. The research holds potential for application in autonomous driving systems. |
doi_str_mv | 10.1109/ACCESS.2023.3329056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10304189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10304189</ieee_id><doaj_id>oai_doaj_org_article_79c320482e82400bb02e6e7bd1a53b7c</doaj_id><sourcerecordid>2887113882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e564a6a3b7f5509f8ba77e2dc225b9b36ac588edd03a171c30e35b1a3643e7953</originalsourceid><addsrcrecordid>eNpNUU1vGyEQXVWt1CjJL2gPSD3bBWZZ4JhaaWMpVao4OSNYxmusXeMCPqS_viQbRZnLfL33ZqTXNF8YXTJG9fer1ep6s1lyymEJwDUV3YfmjLNOL0BA9_Fd_bm5zHlPa6g6EvKsOd5Hd8qFbAomjOQ-Wk_Wkx2QbHCY8FBsCfFAHnM4DORhlzDv4ujrcsT-ZXN3LGEK_2bYbyy76MkPm9GT2v_BlEMuVYbcxCmOcXi6aD5t7Zjx8jWfN48_rx9WN4vbu1_r1dXtogehywJF19rOgpNbIajeKmelRO57zoXTDjrbC6XQewqWSdYDRRCOWehaQKkFnDfrWddHuzfHFCabnky0wbwMYhqMTSX0Ixqpe-C0VRwVbyl1jnLsUDrPrKgP9FXr26x1TPHvCXMx-3hKh_q-4UpJxkApXlEwo_oUc064fbvKqHl2ysxOmWenzKtTlfV1ZgVEfMcA2jKl4T9Vs4_u</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887113882</pqid></control><display><type>article</type><title>Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Wenbin ; Gu, Hong ; Fan, Zhenhong ; Zhu, Xiaochun</creator><creatorcontrib>Zhu, Wenbin ; Gu, Hong ; Fan, Zhenhong ; Zhu, Xiaochun</creatorcontrib><description>This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converting stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating segmentation results under various threshold parameters. By establishing persistence boundaries in these diagrams, the most significant regions are identified, enabling the determination of robust segmentation thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the proposed method, with low error rates and superior performance compared to other segmentation methods. The research holds potential for application in autonomous driving systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3329056</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Disparity map ; Fitting ; Homology ; Image segmentation ; Optimization ; persistent homology ; Roads ; Robustness ; Target recognition ; Three-dimensional displays ; threshold selection optimization ; Thresholding (Imaging) ; Thresholds ; Vehicle dynamics ; Visualization</subject><ispartof>IEEE access, 2023, Vol.11, p.122221-122230</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e564a6a3b7f5509f8ba77e2dc225b9b36ac588edd03a171c30e35b1a3643e7953</cites><orcidid>0000-0002-2485-5973 ; 0000-0002-4230-9968 ; 0000-0003-0877-7706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10304189$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2106,4028,27642,27932,27933,27934,54942</link.rule.ids></links><search><creatorcontrib>Zhu, Wenbin</creatorcontrib><creatorcontrib>Gu, Hong</creatorcontrib><creatorcontrib>Fan, Zhenhong</creatorcontrib><creatorcontrib>Zhu, Xiaochun</creatorcontrib><title>Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converting stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating segmentation results under various threshold parameters. By establishing persistence boundaries in these diagrams, the most significant regions are identified, enabling the determination of robust segmentation thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the proposed method, with low error rates and superior performance compared to other segmentation methods. The research holds potential for application in autonomous driving systems.</description><subject>Cameras</subject><subject>Disparity map</subject><subject>Fitting</subject><subject>Homology</subject><subject>Image segmentation</subject><subject>Optimization</subject><subject>persistent homology</subject><subject>Roads</subject><subject>Robustness</subject><subject>Target recognition</subject><subject>Three-dimensional displays</subject><subject>threshold selection optimization</subject><subject>Thresholding (Imaging)</subject><subject>Thresholds</subject><subject>Vehicle dynamics</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vGyEQXVWt1CjJL2gPSD3bBWZZ4JhaaWMpVao4OSNYxmusXeMCPqS_viQbRZnLfL33ZqTXNF8YXTJG9fer1ep6s1lyymEJwDUV3YfmjLNOL0BA9_Fd_bm5zHlPa6g6EvKsOd5Hd8qFbAomjOQ-Wk_Wkx2QbHCY8FBsCfFAHnM4DORhlzDv4ujrcsT-ZXN3LGEK_2bYbyy76MkPm9GT2v_BlEMuVYbcxCmOcXi6aD5t7Zjx8jWfN48_rx9WN4vbu1_r1dXtogehywJF19rOgpNbIajeKmelRO57zoXTDjrbC6XQewqWSdYDRRCOWehaQKkFnDfrWddHuzfHFCabnky0wbwMYhqMTSX0Ixqpe-C0VRwVbyl1jnLsUDrPrKgP9FXr26x1TPHvCXMx-3hKh_q-4UpJxkApXlEwo_oUc064fbvKqHl2ysxOmWenzKtTlfV1ZgVEfMcA2jKl4T9Vs4_u</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhu, Wenbin</creator><creator>Gu, Hong</creator><creator>Fan, Zhenhong</creator><creator>Zhu, Xiaochun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2485-5973</orcidid><orcidid>https://orcid.org/0000-0002-4230-9968</orcidid><orcidid>https://orcid.org/0000-0003-0877-7706</orcidid></search><sort><creationdate>2023</creationdate><title>Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology</title><author>Zhu, Wenbin ; Gu, Hong ; Fan, Zhenhong ; Zhu, Xiaochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e564a6a3b7f5509f8ba77e2dc225b9b36ac588edd03a171c30e35b1a3643e7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Disparity map</topic><topic>Fitting</topic><topic>Homology</topic><topic>Image segmentation</topic><topic>Optimization</topic><topic>persistent homology</topic><topic>Roads</topic><topic>Robustness</topic><topic>Target recognition</topic><topic>Three-dimensional displays</topic><topic>threshold selection optimization</topic><topic>Thresholding (Imaging)</topic><topic>Thresholds</topic><topic>Vehicle dynamics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wenbin</creatorcontrib><creatorcontrib>Gu, Hong</creatorcontrib><creatorcontrib>Fan, Zhenhong</creatorcontrib><creatorcontrib>Zhu, Xiaochun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wenbin</au><au>Gu, Hong</au><au>Fan, Zhenhong</au><au>Zhu, Xiaochun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>122221</spage><epage>122230</epage><pages>122221-122230</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper introduces a novel method for road target segmentation in the context of autonomous driving based on stereo disparity maps. The proposed method utilizes topological persistence threshold analysis to address the challenges of selecting appropriate thresholds. The approach involves converting stereo road images into uv-disparity maps, extracting road planes using v-disparity maps, and calculating occupancy grid maps using u-disparity maps. Persistence diagrams are then constructed by generating segmentation results under various threshold parameters. By establishing persistence boundaries in these diagrams, the most significant regions are identified, enabling the determination of robust segmentation thresholds. Experimental validation using KITTI stereo image datasets demonstrates the effectiveness of the proposed method, with low error rates and superior performance compared to other segmentation methods. The research holds potential for application in autonomous driving systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3329056</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2485-5973</orcidid><orcidid>https://orcid.org/0000-0002-4230-9968</orcidid><orcidid>https://orcid.org/0000-0003-0877-7706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.122221-122230 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10304189 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cameras Disparity map Fitting Homology Image segmentation Optimization persistent homology Roads Robustness Target recognition Three-dimensional displays threshold selection optimization Thresholding (Imaging) Thresholds Vehicle dynamics Visualization |
title | Robust Stereo Road Image Segmentation Using Threshold Selection Optimization Method Based on Persistent Homology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T02%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Stereo%20Road%20Image%20Segmentation%20Using%20Threshold%20Selection%20Optimization%20Method%20Based%20on%20Persistent%20Homology&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Wenbin&rft.date=2023&rft.volume=11&rft.spage=122221&rft.epage=122230&rft.pages=122221-122230&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3329056&rft_dat=%3Cproquest_ieee_%3E2887113882%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887113882&rft_id=info:pmid/&rft_ieee_id=10304189&rft_doaj_id=oai_doaj_org_article_79c320482e82400bb02e6e7bd1a53b7c&rfr_iscdi=true |