Advancing Aluminum Casting Optimization With Real-Time Temperature and Gap Measurements Using Optical Fiber Sensors at the Metal-Mold Interface
Accurate measurement of interfacial heat transfer during casting solidification is crucial for optimizing metal solidification processes. The gap between the mold wall and the casting surface plays a significant role in heat transfer and cooling rates. In this study, two innovative fiber-optic senso...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Zhang, Bohong Hungund, Abhishek Prakash Alla, Dinesh Reddy Neelakandan, Deva Prasaad Roman, Muhammad O'Malley, Ronald J. Bartlett, Laura Gerald, Rex E. Huang, Jie |
description | Accurate measurement of interfacial heat transfer during casting solidification is crucial for optimizing metal solidification processes. The gap between the mold wall and the casting surface plays a significant role in heat transfer and cooling rates. In this study, two innovative fiber-optic sensors are employed to measure real-time mold gaps and thermal profiles during the solidification of A356 aluminum in a permanent mold casting. The experimental setup consists of a specially designed mold system made of unheated, uncoated tool steel, which facilitates easy installation of the fiber-optic sensors. An Extrinsic Fabry-Perot interferometric (EFPI) sensor is utilized to monitor the evolving gap between the mold wall and the casting surface. This method relies on the unique concept of using molten metal as the second reflection interface for gap measurements. The EFPI gap measurements exhibit high accuracy and precision, with a maximum error of only 2~\mu \text{m} when compared to physical measurements. Simultaneously, a stainless steel-encased fiber utilizing the Rayleigh backscattering (RBS) technique is deployed across the mold wall and cavity to achieve real-time temperature measurements with a spatial resolution of 0.65 mm. The study demonstrates that leveraging high-resolution temperature profiles and gap evolution measurements enhances understanding of heat transfer dynamics at the mold-metal interface, particularly valuable for complex-shaped castings and continuously cast metals. Additionally, the ability to measure the cast shape exiting a continuous casting mold during operation presents a novel tool for real-time product quality monitoring and process safety enhancement by detecting conditions that may lead to slab cracking and breakouts. |
doi_str_mv | 10.1109/TIM.2023.3329217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10304178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10304178</ieee_id><sourcerecordid>2890113226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cf2f9661f60003474642e02030119d78e34f93b6c758ba1d71a4d2947be0d5373</originalsourceid><addsrcrecordid>eNpNkU1LxDAQhoMouH7cPXgIeu6arzbtcVn8WHARdMVjyKZTN9KmNUkF_RP-ZbOsgqdhhmfemZcXoTNKppSS6mq1WE4ZYXzKOasYlXtoQvNcZlVRsH00IYSWWSXy4hAdhfBGCJGFkBP0Pas_tDPWveJZO3bWjR2e6xC3g4ch2s5-6Wh7h19s3OBH0G22sh3gFXQDeB1HD1i7Gt_qAS9Bh9R34GLAz-FPwugW39g1ePwELvQ-YB1x3EDiY5Jb9m2NFy6Cb7SBE3TQ6DbA6W89Rs8316v5XXb_cLuYz-4zw6mImWlYk5zRpkhOuJCiEAwII5xQWtWyBC6aiq8LI_NyrWktqRY1q4RcA6lzLvkxutjp9smrCsZGMBvTOwcmKsaIEDlP0OUOGnz_PkKI6q0fvUt_KVZW6RRnrEgU2VHG9yF4aNTgbaf9p6JEbbNRKRu1zUb9ZpNWzncrFgD-4ZwIKkv-A7NEikw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890113226</pqid></control><display><type>article</type><title>Advancing Aluminum Casting Optimization With Real-Time Temperature and Gap Measurements Using Optical Fiber Sensors at the Metal-Mold Interface</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Bohong ; Hungund, Abhishek Prakash ; Alla, Dinesh Reddy ; Neelakandan, Deva Prasaad ; Roman, Muhammad ; O'Malley, Ronald J. ; Bartlett, Laura ; Gerald, Rex E. ; Huang, Jie</creator><creatorcontrib>Zhang, Bohong ; Hungund, Abhishek Prakash ; Alla, Dinesh Reddy ; Neelakandan, Deva Prasaad ; Roman, Muhammad ; O'Malley, Ronald J. ; Bartlett, Laura ; Gerald, Rex E. ; Huang, Jie ; Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><description>Accurate measurement of interfacial heat transfer during casting solidification is crucial for optimizing metal solidification processes. The gap between the mold wall and the casting surface plays a significant role in heat transfer and cooling rates. In this study, two innovative fiber-optic sensors are employed to measure real-time mold gaps and thermal profiles during the solidification of A356 aluminum in a permanent mold casting. The experimental setup consists of a specially designed mold system made of unheated, uncoated tool steel, which facilitates easy installation of the fiber-optic sensors. An Extrinsic Fabry-Perot interferometric (EFPI) sensor is utilized to monitor the evolving gap between the mold wall and the casting surface. This method relies on the unique concept of using molten metal as the second reflection interface for gap measurements. The EFPI gap measurements exhibit high accuracy and precision, with a maximum error of only <inline-formula> <tex-math notation="LaTeX">2~\mu \text{m} </tex-math></inline-formula> when compared to physical measurements. Simultaneously, a stainless steel-encased fiber utilizing the Rayleigh backscattering (RBS) technique is deployed across the mold wall and cavity to achieve real-time temperature measurements with a spatial resolution of 0.65 mm. The study demonstrates that leveraging high-resolution temperature profiles and gap evolution measurements enhances understanding of heat transfer dynamics at the mold-metal interface, particularly valuable for complex-shaped castings and continuously cast metals. Additionally, the ability to measure the cast shape exiting a continuous casting mold during operation presents a novel tool for real-time product quality monitoring and process safety enhancement by detecting conditions that may lead to slab cracking and breakouts.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3329217</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; Aluminum casting ; Casting ; Castings ; Continuous cast shapes ; Continuous casting ; Cooling rate ; distributed temperature measurement ; Extrinsic Fabry-Perot interferometers ; extrinsic Fabry–Perot interferometer (EFPI) ; Fiber optics ; gap measurement ; Heat transfer ; interfacial heat transfer ; Liquid metals ; Metals ; molten metal ; Optical fiber sensors ; Optical fibers ; optical frequency-domain reflectometry (OFDR) ; Optimization ; OTHER INSTRUMENTATION ; Permanent mold casting ; Permanent molds ; Rayleigh backscattering (RBS) ; Real time ; Sensors ; Solidification ; Spatial resolution ; Stainless steels ; Temperature measurement ; Temperature profiles ; Temperature sensors ; Time measurement ; Tool steels</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-cf2f9661f60003474642e02030119d78e34f93b6c758ba1d71a4d2947be0d5373</cites><orcidid>0009-0006-3465-8910 ; 0000-0003-0182-0468 ; 0000-0002-4013-6821 ; 0000-0001-5172-1260 ; 0000-0002-2567-6459 ; 0000-0002-5574-8396 ; 0000-0002-8659-2910 ; 0000-0002-1072-1878 ; 0000-0003-1502-1034 ; 0000000210721878 ; 0000000315021034 ; 0009000634658910 ; 0000000151721260 ; 0000000301820468 ; 0000000240136821 ; 0000000225676459 ; 0000000286592910 ; 0000000255748396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10304178$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2204453$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Bohong</creatorcontrib><creatorcontrib>Hungund, Abhishek Prakash</creatorcontrib><creatorcontrib>Alla, Dinesh Reddy</creatorcontrib><creatorcontrib>Neelakandan, Deva Prasaad</creatorcontrib><creatorcontrib>Roman, Muhammad</creatorcontrib><creatorcontrib>O'Malley, Ronald J.</creatorcontrib><creatorcontrib>Bartlett, Laura</creatorcontrib><creatorcontrib>Gerald, Rex E.</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><title>Advancing Aluminum Casting Optimization With Real-Time Temperature and Gap Measurements Using Optical Fiber Sensors at the Metal-Mold Interface</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Accurate measurement of interfacial heat transfer during casting solidification is crucial for optimizing metal solidification processes. The gap between the mold wall and the casting surface plays a significant role in heat transfer and cooling rates. In this study, two innovative fiber-optic sensors are employed to measure real-time mold gaps and thermal profiles during the solidification of A356 aluminum in a permanent mold casting. The experimental setup consists of a specially designed mold system made of unheated, uncoated tool steel, which facilitates easy installation of the fiber-optic sensors. An Extrinsic Fabry-Perot interferometric (EFPI) sensor is utilized to monitor the evolving gap between the mold wall and the casting surface. This method relies on the unique concept of using molten metal as the second reflection interface for gap measurements. The EFPI gap measurements exhibit high accuracy and precision, with a maximum error of only <inline-formula> <tex-math notation="LaTeX">2~\mu \text{m} </tex-math></inline-formula> when compared to physical measurements. Simultaneously, a stainless steel-encased fiber utilizing the Rayleigh backscattering (RBS) technique is deployed across the mold wall and cavity to achieve real-time temperature measurements with a spatial resolution of 0.65 mm. The study demonstrates that leveraging high-resolution temperature profiles and gap evolution measurements enhances understanding of heat transfer dynamics at the mold-metal interface, particularly valuable for complex-shaped castings and continuously cast metals. Additionally, the ability to measure the cast shape exiting a continuous casting mold during operation presents a novel tool for real-time product quality monitoring and process safety enhancement by detecting conditions that may lead to slab cracking and breakouts.</description><subject>Aluminum</subject><subject>Aluminum casting</subject><subject>Casting</subject><subject>Castings</subject><subject>Continuous cast shapes</subject><subject>Continuous casting</subject><subject>Cooling rate</subject><subject>distributed temperature measurement</subject><subject>Extrinsic Fabry-Perot interferometers</subject><subject>extrinsic Fabry–Perot interferometer (EFPI)</subject><subject>Fiber optics</subject><subject>gap measurement</subject><subject>Heat transfer</subject><subject>interfacial heat transfer</subject><subject>Liquid metals</subject><subject>Metals</subject><subject>molten metal</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>optical frequency-domain reflectometry (OFDR)</subject><subject>Optimization</subject><subject>OTHER INSTRUMENTATION</subject><subject>Permanent mold casting</subject><subject>Permanent molds</subject><subject>Rayleigh backscattering (RBS)</subject><subject>Real time</subject><subject>Sensors</subject><subject>Solidification</subject><subject>Spatial resolution</subject><subject>Stainless steels</subject><subject>Temperature measurement</subject><subject>Temperature profiles</subject><subject>Temperature sensors</subject><subject>Time measurement</subject><subject>Tool steels</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkU1LxDAQhoMouH7cPXgIeu6arzbtcVn8WHARdMVjyKZTN9KmNUkF_RP-ZbOsgqdhhmfemZcXoTNKppSS6mq1WE4ZYXzKOasYlXtoQvNcZlVRsH00IYSWWSXy4hAdhfBGCJGFkBP0Pas_tDPWveJZO3bWjR2e6xC3g4ch2s5-6Wh7h19s3OBH0G22sh3gFXQDeB1HD1i7Gt_qAS9Bh9R34GLAz-FPwugW39g1ePwELvQ-YB1x3EDiY5Jb9m2NFy6Cb7SBE3TQ6DbA6W89Rs8316v5XXb_cLuYz-4zw6mImWlYk5zRpkhOuJCiEAwII5xQWtWyBC6aiq8LI_NyrWktqRY1q4RcA6lzLvkxutjp9smrCsZGMBvTOwcmKsaIEDlP0OUOGnz_PkKI6q0fvUt_KVZW6RRnrEgU2VHG9yF4aNTgbaf9p6JEbbNRKRu1zUb9ZpNWzncrFgD-4ZwIKkv-A7NEikw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhang, Bohong</creator><creator>Hungund, Abhishek Prakash</creator><creator>Alla, Dinesh Reddy</creator><creator>Neelakandan, Deva Prasaad</creator><creator>Roman, Muhammad</creator><creator>O'Malley, Ronald J.</creator><creator>Bartlett, Laura</creator><creator>Gerald, Rex E.</creator><creator>Huang, Jie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0009-0006-3465-8910</orcidid><orcidid>https://orcid.org/0000-0003-0182-0468</orcidid><orcidid>https://orcid.org/0000-0002-4013-6821</orcidid><orcidid>https://orcid.org/0000-0001-5172-1260</orcidid><orcidid>https://orcid.org/0000-0002-2567-6459</orcidid><orcidid>https://orcid.org/0000-0002-5574-8396</orcidid><orcidid>https://orcid.org/0000-0002-8659-2910</orcidid><orcidid>https://orcid.org/0000-0002-1072-1878</orcidid><orcidid>https://orcid.org/0000-0003-1502-1034</orcidid><orcidid>https://orcid.org/0000000210721878</orcidid><orcidid>https://orcid.org/0000000315021034</orcidid><orcidid>https://orcid.org/0009000634658910</orcidid><orcidid>https://orcid.org/0000000151721260</orcidid><orcidid>https://orcid.org/0000000301820468</orcidid><orcidid>https://orcid.org/0000000240136821</orcidid><orcidid>https://orcid.org/0000000225676459</orcidid><orcidid>https://orcid.org/0000000286592910</orcidid><orcidid>https://orcid.org/0000000255748396</orcidid></search><sort><creationdate>20230101</creationdate><title>Advancing Aluminum Casting Optimization With Real-Time Temperature and Gap Measurements Using Optical Fiber Sensors at the Metal-Mold Interface</title><author>Zhang, Bohong ; Hungund, Abhishek Prakash ; Alla, Dinesh Reddy ; Neelakandan, Deva Prasaad ; Roman, Muhammad ; O'Malley, Ronald J. ; Bartlett, Laura ; Gerald, Rex E. ; Huang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cf2f9661f60003474642e02030119d78e34f93b6c758ba1d71a4d2947be0d5373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum casting</topic><topic>Casting</topic><topic>Castings</topic><topic>Continuous cast shapes</topic><topic>Continuous casting</topic><topic>Cooling rate</topic><topic>distributed temperature measurement</topic><topic>Extrinsic Fabry-Perot interferometers</topic><topic>extrinsic Fabry–Perot interferometer (EFPI)</topic><topic>Fiber optics</topic><topic>gap measurement</topic><topic>Heat transfer</topic><topic>interfacial heat transfer</topic><topic>Liquid metals</topic><topic>Metals</topic><topic>molten metal</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>optical frequency-domain reflectometry (OFDR)</topic><topic>Optimization</topic><topic>OTHER INSTRUMENTATION</topic><topic>Permanent mold casting</topic><topic>Permanent molds</topic><topic>Rayleigh backscattering (RBS)</topic><topic>Real time</topic><topic>Sensors</topic><topic>Solidification</topic><topic>Spatial resolution</topic><topic>Stainless steels</topic><topic>Temperature measurement</topic><topic>Temperature profiles</topic><topic>Temperature sensors</topic><topic>Time measurement</topic><topic>Tool steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bohong</creatorcontrib><creatorcontrib>Hungund, Abhishek Prakash</creatorcontrib><creatorcontrib>Alla, Dinesh Reddy</creatorcontrib><creatorcontrib>Neelakandan, Deva Prasaad</creatorcontrib><creatorcontrib>Roman, Muhammad</creatorcontrib><creatorcontrib>O'Malley, Ronald J.</creatorcontrib><creatorcontrib>Bartlett, Laura</creatorcontrib><creatorcontrib>Gerald, Rex E.</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Univ. of Missouri, Columbia, MO (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bohong</au><au>Hungund, Abhishek Prakash</au><au>Alla, Dinesh Reddy</au><au>Neelakandan, Deva Prasaad</au><au>Roman, Muhammad</au><au>O'Malley, Ronald J.</au><au>Bartlett, Laura</au><au>Gerald, Rex E.</au><au>Huang, Jie</au><aucorp>Univ. of Missouri, Columbia, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Aluminum Casting Optimization With Real-Time Temperature and Gap Measurements Using Optical Fiber Sensors at the Metal-Mold Interface</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Accurate measurement of interfacial heat transfer during casting solidification is crucial for optimizing metal solidification processes. The gap between the mold wall and the casting surface plays a significant role in heat transfer and cooling rates. In this study, two innovative fiber-optic sensors are employed to measure real-time mold gaps and thermal profiles during the solidification of A356 aluminum in a permanent mold casting. The experimental setup consists of a specially designed mold system made of unheated, uncoated tool steel, which facilitates easy installation of the fiber-optic sensors. An Extrinsic Fabry-Perot interferometric (EFPI) sensor is utilized to monitor the evolving gap between the mold wall and the casting surface. This method relies on the unique concept of using molten metal as the second reflection interface for gap measurements. The EFPI gap measurements exhibit high accuracy and precision, with a maximum error of only <inline-formula> <tex-math notation="LaTeX">2~\mu \text{m} </tex-math></inline-formula> when compared to physical measurements. Simultaneously, a stainless steel-encased fiber utilizing the Rayleigh backscattering (RBS) technique is deployed across the mold wall and cavity to achieve real-time temperature measurements with a spatial resolution of 0.65 mm. The study demonstrates that leveraging high-resolution temperature profiles and gap evolution measurements enhances understanding of heat transfer dynamics at the mold-metal interface, particularly valuable for complex-shaped castings and continuously cast metals. Additionally, the ability to measure the cast shape exiting a continuous casting mold during operation presents a novel tool for real-time product quality monitoring and process safety enhancement by detecting conditions that may lead to slab cracking and breakouts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3329217</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0006-3465-8910</orcidid><orcidid>https://orcid.org/0000-0003-0182-0468</orcidid><orcidid>https://orcid.org/0000-0002-4013-6821</orcidid><orcidid>https://orcid.org/0000-0001-5172-1260</orcidid><orcidid>https://orcid.org/0000-0002-2567-6459</orcidid><orcidid>https://orcid.org/0000-0002-5574-8396</orcidid><orcidid>https://orcid.org/0000-0002-8659-2910</orcidid><orcidid>https://orcid.org/0000-0002-1072-1878</orcidid><orcidid>https://orcid.org/0000-0003-1502-1034</orcidid><orcidid>https://orcid.org/0000000210721878</orcidid><orcidid>https://orcid.org/0000000315021034</orcidid><orcidid>https://orcid.org/0009000634658910</orcidid><orcidid>https://orcid.org/0000000151721260</orcidid><orcidid>https://orcid.org/0000000301820468</orcidid><orcidid>https://orcid.org/0000000240136821</orcidid><orcidid>https://orcid.org/0000000225676459</orcidid><orcidid>https://orcid.org/0000000286592910</orcidid><orcidid>https://orcid.org/0000000255748396</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-12 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10304178 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum Aluminum casting Casting Castings Continuous cast shapes Continuous casting Cooling rate distributed temperature measurement Extrinsic Fabry-Perot interferometers extrinsic Fabry–Perot interferometer (EFPI) Fiber optics gap measurement Heat transfer interfacial heat transfer Liquid metals Metals molten metal Optical fiber sensors Optical fibers optical frequency-domain reflectometry (OFDR) Optimization OTHER INSTRUMENTATION Permanent mold casting Permanent molds Rayleigh backscattering (RBS) Real time Sensors Solidification Spatial resolution Stainless steels Temperature measurement Temperature profiles Temperature sensors Time measurement Tool steels |
title | Advancing Aluminum Casting Optimization With Real-Time Temperature and Gap Measurements Using Optical Fiber Sensors at the Metal-Mold Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Aluminum%20Casting%20Optimization%20With%20Real-Time%20Temperature%20and%20Gap%20Measurements%20Using%20Optical%20Fiber%20Sensors%20at%20the%20Metal-Mold%20Interface&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zhang,%20Bohong&rft.aucorp=Univ.%20of%20Missouri,%20Columbia,%20MO%20(United%20States)&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3329217&rft_dat=%3Cproquest_ieee_%3E2890113226%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890113226&rft_id=info:pmid/&rft_ieee_id=10304178&rfr_iscdi=true |