Binaryware: A High-Performance Digital Hardware Accelerator for Binary Neural Networks

Binary neural networks (BNNs) largely reduce the memory footprint and computational complexity, so they are gaining interests on various mobile applications. In the BNNs, the first layer often accounts for the largest part of the entire computing time because the layer usually uses multi-bit multipl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2023-12, Vol.31 (12), p.2137-2141
Hauptverfasser: Ryu, Sungju, Oh, Youngtaek, Kim, Jae-Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2141
container_issue 12
container_start_page 2137
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 31
creator Ryu, Sungju
Oh, Youngtaek
Kim, Jae-Joon
description Binary neural networks (BNNs) largely reduce the memory footprint and computational complexity, so they are gaining interests on various mobile applications. In the BNNs, the first layer often accounts for the largest part of the entire computing time because the layer usually uses multi-bit multiplications. However, traditional hardware designed for BNN computing focuses primarily on the rest layers, resulting in significant performance degradation. In this brief, we introduce Binaryware architecture which achieves the high-performance computation on both the first and rest layers. Experimental results show that our Binaryware improves the throughput per compute area by 1.5- 13.3\times on various BNN workloads.
doi_str_mv 10.1109/TVLSI.2023.3324834
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10304103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10304103</ieee_id><sourcerecordid>2895011434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-700038869362d81d6335f6e38b68ef4924119fca6de9f985e30877d7b169ae743</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwBxCHSJxbkjhNE25jfGzSNJAYu0ZZ646ObR1pp4l_T0p3IAfHh-e1rYeQa85izpm5m80n7-NYMAExgJAa5Anp8SRJIxPeaeiZgkgLzs7JRV2vGONSGtYj84dy6_zPwXm8pwM6Kpef0Rv6ovIbt82QPpbLsnFrOnI-byE6yDJco3dN5WmgaJenU9z7gE2xOVT-q74kZ4Vb13h1_Pvk4_lpNhxFk9eX8XAwiTIh0yZKGWOgtTKgRK55rgCSQiHohdJYSCMk56bInMrRFEYnCEynaZ4uuDIOUwl9ctvN3fnqe491Y1fV3m_DSiu0SRjnElpKdFTmq7r2WNidLzfhbMuZbf3ZP3-29WeP_kLopguViPgvAEyGAr9Lr2sT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895011434</pqid></control><display><type>article</type><title>Binaryware: A High-Performance Digital Hardware Accelerator for Binary Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Ryu, Sungju ; Oh, Youngtaek ; Kim, Jae-Joon</creator><creatorcontrib>Ryu, Sungju ; Oh, Youngtaek ; Kim, Jae-Joon</creatorcontrib><description>Binary neural networks (BNNs) largely reduce the memory footprint and computational complexity, so they are gaining interests on various mobile applications. In the BNNs, the first layer often accounts for the largest part of the entire computing time because the layer usually uses multi-bit multiplications. However, traditional hardware designed for BNN computing focuses primarily on the rest layers, resulting in significant performance degradation. In this brief, we introduce Binaryware architecture which achieves the high-performance computation on both the first and rest layers. Experimental results show that our Binaryware improves the throughput per compute area by 1.5-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;13.3\times &lt;/tex-math&gt;&lt;/inline-formula&gt; on various BNN workloads.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2023.3324834</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adders ; Applications programs ; Artificial intelligence ; binary neural networks (BNNs) ; Computer architecture ; Computing time ; Energy efficiency ; Hardware ; Hardware acceleration ; hardware accelerator ; Logic gates ; Mobile computing ; Neural networks ; Performance degradation ; quantization ; Random access memory</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2023-12, Vol.31 (12), p.2137-2141</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-700038869362d81d6335f6e38b68ef4924119fca6de9f985e30877d7b169ae743</cites><orcidid>0000-0002-0254-391X ; 0000-0001-5175-8258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10304103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10304103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ryu, Sungju</creatorcontrib><creatorcontrib>Oh, Youngtaek</creatorcontrib><creatorcontrib>Kim, Jae-Joon</creatorcontrib><title>Binaryware: A High-Performance Digital Hardware Accelerator for Binary Neural Networks</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Binary neural networks (BNNs) largely reduce the memory footprint and computational complexity, so they are gaining interests on various mobile applications. In the BNNs, the first layer often accounts for the largest part of the entire computing time because the layer usually uses multi-bit multiplications. However, traditional hardware designed for BNN computing focuses primarily on the rest layers, resulting in significant performance degradation. In this brief, we introduce Binaryware architecture which achieves the high-performance computation on both the first and rest layers. Experimental results show that our Binaryware improves the throughput per compute area by 1.5-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;13.3\times &lt;/tex-math&gt;&lt;/inline-formula&gt; on various BNN workloads.</description><subject>Adders</subject><subject>Applications programs</subject><subject>Artificial intelligence</subject><subject>binary neural networks (BNNs)</subject><subject>Computer architecture</subject><subject>Computing time</subject><subject>Energy efficiency</subject><subject>Hardware</subject><subject>Hardware acceleration</subject><subject>hardware accelerator</subject><subject>Logic gates</subject><subject>Mobile computing</subject><subject>Neural networks</subject><subject>Performance degradation</subject><subject>quantization</subject><subject>Random access memory</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEmPwBxCHSJxbkjhNE25jfGzSNJAYu0ZZ646ObR1pp4l_T0p3IAfHh-e1rYeQa85izpm5m80n7-NYMAExgJAa5Anp8SRJIxPeaeiZgkgLzs7JRV2vGONSGtYj84dy6_zPwXm8pwM6Kpef0Rv6ovIbt82QPpbLsnFrOnI-byE6yDJco3dN5WmgaJenU9z7gE2xOVT-q74kZ4Vb13h1_Pvk4_lpNhxFk9eX8XAwiTIh0yZKGWOgtTKgRK55rgCSQiHohdJYSCMk56bInMrRFEYnCEynaZ4uuDIOUwl9ctvN3fnqe491Y1fV3m_DSiu0SRjnElpKdFTmq7r2WNidLzfhbMuZbf3ZP3-29WeP_kLopguViPgvAEyGAr9Lr2sT</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ryu, Sungju</creator><creator>Oh, Youngtaek</creator><creator>Kim, Jae-Joon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0254-391X</orcidid><orcidid>https://orcid.org/0000-0001-5175-8258</orcidid></search><sort><creationdate>20231201</creationdate><title>Binaryware: A High-Performance Digital Hardware Accelerator for Binary Neural Networks</title><author>Ryu, Sungju ; Oh, Youngtaek ; Kim, Jae-Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-700038869362d81d6335f6e38b68ef4924119fca6de9f985e30877d7b169ae743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adders</topic><topic>Applications programs</topic><topic>Artificial intelligence</topic><topic>binary neural networks (BNNs)</topic><topic>Computer architecture</topic><topic>Computing time</topic><topic>Energy efficiency</topic><topic>Hardware</topic><topic>Hardware acceleration</topic><topic>hardware accelerator</topic><topic>Logic gates</topic><topic>Mobile computing</topic><topic>Neural networks</topic><topic>Performance degradation</topic><topic>quantization</topic><topic>Random access memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Sungju</creatorcontrib><creatorcontrib>Oh, Youngtaek</creatorcontrib><creatorcontrib>Kim, Jae-Joon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryu, Sungju</au><au>Oh, Youngtaek</au><au>Kim, Jae-Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binaryware: A High-Performance Digital Hardware Accelerator for Binary Neural Networks</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>31</volume><issue>12</issue><spage>2137</spage><epage>2141</epage><pages>2137-2141</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Binary neural networks (BNNs) largely reduce the memory footprint and computational complexity, so they are gaining interests on various mobile applications. In the BNNs, the first layer often accounts for the largest part of the entire computing time because the layer usually uses multi-bit multiplications. However, traditional hardware designed for BNN computing focuses primarily on the rest layers, resulting in significant performance degradation. In this brief, we introduce Binaryware architecture which achieves the high-performance computation on both the first and rest layers. Experimental results show that our Binaryware improves the throughput per compute area by 1.5-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;13.3\times &lt;/tex-math&gt;&lt;/inline-formula&gt; on various BNN workloads.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2023.3324834</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0254-391X</orcidid><orcidid>https://orcid.org/0000-0001-5175-8258</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2023-12, Vol.31 (12), p.2137-2141
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_10304103
source IEEE Electronic Library (IEL)
subjects Adders
Applications programs
Artificial intelligence
binary neural networks (BNNs)
Computer architecture
Computing time
Energy efficiency
Hardware
Hardware acceleration
hardware accelerator
Logic gates
Mobile computing
Neural networks
Performance degradation
quantization
Random access memory
title Binaryware: A High-Performance Digital Hardware Accelerator for Binary Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binaryware:%20A%20High-Performance%20Digital%20Hardware%20Accelerator%20for%20Binary%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Ryu,%20Sungju&rft.date=2023-12-01&rft.volume=31&rft.issue=12&rft.spage=2137&rft.epage=2141&rft.pages=2137-2141&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2023.3324834&rft_dat=%3Cproquest_RIE%3E2895011434%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895011434&rft_id=info:pmid/&rft_ieee_id=10304103&rfr_iscdi=true