Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning
Proportional-integral-derivative(PID) control underlies {>}95\% of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability fo...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2024-03, Vol.42 (6), p.2018-2025 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2025 |
---|---|
container_issue | 6 |
container_start_page | 2018 |
container_title | Journal of lightwave technology |
container_volume | 42 |
creator | Shabka, Zacharaya Enrico, Michael Almeida, Paulo Parsons, Nick Zervas, Georgios |
description | Proportional-integral-derivative(PID) control underlies {>}95\% of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability for optical switches) PID control requires three parameters to be optimally tuned (aka PID tuning). Typical PID tuning methods involve slow, exhaustive and often hands-on search processes which waste engineering resources and slow down production. Moreover, manufacturing tolerances in production mean that actuators are non-identical and so controlled differently by the same PID parameters. This work presents a novel PID parameter optimisation method (patent pending) based on deep reinforcement learning which avoids tuning procedures altogether whilst improving switching performance. On a market leading optical switching product based on electromechanical control processes, compared against the manufacturer's production parameter set, average switching speed is improved 22% whilst 5\times more (17.5% to 87.5%) switching events stabilise in \leq \text{20}\,\text{ms} (the ideal worst-case performance) without any practical deterioration in other performance metrics such as overshoot. The method also generates actuator-tailored PID parameters in \mathbf {O}(milliseconds) without any interaction with the device using only generic information about the actuator (known from manufacturing and characterisation processes). This renders the method highly applicable to mass-manufacturing scenarios generally. Training is achieved with just a small number of actuators and can generally complete in \mathbf {O}(hours), so can be easily repeated if needed (e.g. if new hardware is built using entirely different types of actuators). |
doi_str_mv | 10.1109/JLT.2023.3328330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10301680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10301680</ieee_id><sourcerecordid>2947531581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-cb802345adaf641829c509bc410653bbf90dc2cc3d6cfe1ea16c7eaa8e6e52f23</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xZ-KMqHwrUhEtYrQc50JdpXFxXCH-PS7twHTS3fPenR6ELimZUErKm5dqMWGE8QnnTHFOjtCISqkyxig_RiNScJ6pgolTdDYMK0KoEKoYIf0afLO10fk-m1vTmboDPPV9DL7Ds010azeY3RS3Pvw1EoTn3y7apes_8YeLS3wHsMFv4PrEWFhDH3EFJvQJOEcnrekGuDjUMXp_uF9Mn7Jq9vg8va0yy4SMma1V-l1I05g2F1Sx0kpS1lZQkkte121JGsus5U1uW6BgaG4LMEZBDpK1jI_R9X7vJvivLQxRr_w29OmkZqUoJKdS0USRPWWDH4YArd4EtzbhR1Oidxp10qh3GvVBY4pc7SMOAP7hnNBcEf4LG-Bvyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947531581</pqid></control><display><type>article</type><title>Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Shabka, Zacharaya ; Enrico, Michael ; Almeida, Paulo ; Parsons, Nick ; Zervas, Georgios</creator><creatorcontrib>Shabka, Zacharaya ; Enrico, Michael ; Almeida, Paulo ; Parsons, Nick ; Zervas, Georgios</creatorcontrib><description><![CDATA[Proportional-integral-derivative(PID) control underlies <inline-formula><tex-math notation="LaTeX">{>}95\%</tex-math></inline-formula> of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability for optical switches) PID control requires three parameters to be optimally tuned (aka PID tuning). Typical PID tuning methods involve slow, exhaustive and often hands-on search processes which waste engineering resources and slow down production. Moreover, manufacturing tolerances in production mean that actuators are non-identical and so controlled differently by the same PID parameters. This work presents a novel PID parameter optimisation method (patent pending) based on deep reinforcement learning which avoids tuning procedures altogether whilst improving switching performance. On a market leading optical switching product based on electromechanical control processes, compared against the manufacturer's production parameter set, average switching speed is improved 22% whilst <inline-formula><tex-math notation="LaTeX">5\times</tex-math></inline-formula> more (17.5% to 87.5%) switching events stabilise in <inline-formula><tex-math notation="LaTeX">\leq \text{20}\,\text{ms}</tex-math></inline-formula> (the ideal worst-case performance) without any practical deterioration in other performance metrics such as overshoot. The method also generates actuator-tailored PID parameters in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(milliseconds)</tex-math></inline-formula> without any interaction with the device using only generic information about the actuator (known from manufacturing and characterisation processes). This renders the method highly applicable to mass-manufacturing scenarios generally. Training is achieved with just a small number of actuators and can generally complete in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(hours)</tex-math></inline-formula>, so can be easily repeated if needed (e.g. if new hardware is built using entirely different types of actuators).]]></description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2023.3328330</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Beam steering ; Business metrics ; Control systems ; Deep learning ; IEEE ; IEEEtran ; lATEX ; Manufacturing ; Optical switches ; Optical switching ; Optimization ; Parameters ; Performance measurement ; Piezoelectric actuators ; Process control ; Production ; Proportional integral derivative ; Switches ; template ; Tolerances ; Tuning</subject><ispartof>Journal of lightwave technology, 2024-03, Vol.42 (6), p.2018-2025</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-cb802345adaf641829c509bc410653bbf90dc2cc3d6cfe1ea16c7eaa8e6e52f23</cites><orcidid>0000-0001-6702-5059 ; 0000-0001-5587-9401 ; 0000-0003-1519-0604 ; 0000-0002-9137-570X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10301680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10301680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shabka, Zacharaya</creatorcontrib><creatorcontrib>Enrico, Michael</creatorcontrib><creatorcontrib>Almeida, Paulo</creatorcontrib><creatorcontrib>Parsons, Nick</creatorcontrib><creatorcontrib>Zervas, Georgios</creatorcontrib><title>Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description><![CDATA[Proportional-integral-derivative(PID) control underlies <inline-formula><tex-math notation="LaTeX">{>}95\%</tex-math></inline-formula> of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability for optical switches) PID control requires three parameters to be optimally tuned (aka PID tuning). Typical PID tuning methods involve slow, exhaustive and often hands-on search processes which waste engineering resources and slow down production. Moreover, manufacturing tolerances in production mean that actuators are non-identical and so controlled differently by the same PID parameters. This work presents a novel PID parameter optimisation method (patent pending) based on deep reinforcement learning which avoids tuning procedures altogether whilst improving switching performance. On a market leading optical switching product based on electromechanical control processes, compared against the manufacturer's production parameter set, average switching speed is improved 22% whilst <inline-formula><tex-math notation="LaTeX">5\times</tex-math></inline-formula> more (17.5% to 87.5%) switching events stabilise in <inline-formula><tex-math notation="LaTeX">\leq \text{20}\,\text{ms}</tex-math></inline-formula> (the ideal worst-case performance) without any practical deterioration in other performance metrics such as overshoot. The method also generates actuator-tailored PID parameters in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(milliseconds)</tex-math></inline-formula> without any interaction with the device using only generic information about the actuator (known from manufacturing and characterisation processes). This renders the method highly applicable to mass-manufacturing scenarios generally. Training is achieved with just a small number of actuators and can generally complete in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(hours)</tex-math></inline-formula>, so can be easily repeated if needed (e.g. if new hardware is built using entirely different types of actuators).]]></description><subject>Actuators</subject><subject>Beam steering</subject><subject>Business metrics</subject><subject>Control systems</subject><subject>Deep learning</subject><subject>IEEE</subject><subject>IEEEtran</subject><subject>lATEX</subject><subject>Manufacturing</subject><subject>Optical switches</subject><subject>Optical switching</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance measurement</subject><subject>Piezoelectric actuators</subject><subject>Process control</subject><subject>Production</subject><subject>Proportional integral derivative</subject><subject>Switches</subject><subject>template</subject><subject>Tolerances</subject><subject>Tuning</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xZ-KMqHwrUhEtYrQc50JdpXFxXCH-PS7twHTS3fPenR6ELimZUErKm5dqMWGE8QnnTHFOjtCISqkyxig_RiNScJ6pgolTdDYMK0KoEKoYIf0afLO10fk-m1vTmboDPPV9DL7Ds010azeY3RS3Pvw1EoTn3y7apes_8YeLS3wHsMFv4PrEWFhDH3EFJvQJOEcnrekGuDjUMXp_uF9Mn7Jq9vg8va0yy4SMma1V-l1I05g2F1Sx0kpS1lZQkkte121JGsus5U1uW6BgaG4LMEZBDpK1jI_R9X7vJvivLQxRr_w29OmkZqUoJKdS0USRPWWDH4YArd4EtzbhR1Oidxp10qh3GvVBY4pc7SMOAP7hnNBcEf4LG-Bvyg</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Shabka, Zacharaya</creator><creator>Enrico, Michael</creator><creator>Almeida, Paulo</creator><creator>Parsons, Nick</creator><creator>Zervas, Georgios</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6702-5059</orcidid><orcidid>https://orcid.org/0000-0001-5587-9401</orcidid><orcidid>https://orcid.org/0000-0003-1519-0604</orcidid><orcidid>https://orcid.org/0000-0002-9137-570X</orcidid></search><sort><creationdate>20240315</creationdate><title>Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning</title><author>Shabka, Zacharaya ; Enrico, Michael ; Almeida, Paulo ; Parsons, Nick ; Zervas, Georgios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-cb802345adaf641829c509bc410653bbf90dc2cc3d6cfe1ea16c7eaa8e6e52f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Beam steering</topic><topic>Business metrics</topic><topic>Control systems</topic><topic>Deep learning</topic><topic>IEEE</topic><topic>IEEEtran</topic><topic>lATEX</topic><topic>Manufacturing</topic><topic>Optical switches</topic><topic>Optical switching</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance measurement</topic><topic>Piezoelectric actuators</topic><topic>Process control</topic><topic>Production</topic><topic>Proportional integral derivative</topic><topic>Switches</topic><topic>template</topic><topic>Tolerances</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabka, Zacharaya</creatorcontrib><creatorcontrib>Enrico, Michael</creatorcontrib><creatorcontrib>Almeida, Paulo</creatorcontrib><creatorcontrib>Parsons, Nick</creatorcontrib><creatorcontrib>Zervas, Georgios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shabka, Zacharaya</au><au>Enrico, Michael</au><au>Almeida, Paulo</au><au>Parsons, Nick</au><au>Zervas, Georgios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2024-03-15</date><risdate>2024</risdate><volume>42</volume><issue>6</issue><spage>2018</spage><epage>2025</epage><pages>2018-2025</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract><![CDATA[Proportional-integral-derivative(PID) control underlies <inline-formula><tex-math notation="LaTeX">{>}95\%</tex-math></inline-formula> of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability for optical switches) PID control requires three parameters to be optimally tuned (aka PID tuning). Typical PID tuning methods involve slow, exhaustive and often hands-on search processes which waste engineering resources and slow down production. Moreover, manufacturing tolerances in production mean that actuators are non-identical and so controlled differently by the same PID parameters. This work presents a novel PID parameter optimisation method (patent pending) based on deep reinforcement learning which avoids tuning procedures altogether whilst improving switching performance. On a market leading optical switching product based on electromechanical control processes, compared against the manufacturer's production parameter set, average switching speed is improved 22% whilst <inline-formula><tex-math notation="LaTeX">5\times</tex-math></inline-formula> more (17.5% to 87.5%) switching events stabilise in <inline-formula><tex-math notation="LaTeX">\leq \text{20}\,\text{ms}</tex-math></inline-formula> (the ideal worst-case performance) without any practical deterioration in other performance metrics such as overshoot. The method also generates actuator-tailored PID parameters in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(milliseconds)</tex-math></inline-formula> without any interaction with the device using only generic information about the actuator (known from manufacturing and characterisation processes). This renders the method highly applicable to mass-manufacturing scenarios generally. Training is achieved with just a small number of actuators and can generally complete in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(hours)</tex-math></inline-formula>, so can be easily repeated if needed (e.g. if new hardware is built using entirely different types of actuators).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2023.3328330</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6702-5059</orcidid><orcidid>https://orcid.org/0000-0001-5587-9401</orcidid><orcidid>https://orcid.org/0000-0003-1519-0604</orcidid><orcidid>https://orcid.org/0000-0002-9137-570X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2024-03, Vol.42 (6), p.2018-2025 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_10301680 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Beam steering Business metrics Control systems Deep learning IEEE IEEEtran lATEX Manufacturing Optical switches Optical switching Optimization Parameters Performance measurement Piezoelectric actuators Process control Production Proportional integral derivative Switches template Tolerances Tuning |
title | Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production-Scalable%20Control%20Optimisation%20for%20Optical%20Switching%20With%20Deep%20Reinforcement%20Learning&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Shabka,%20Zacharaya&rft.date=2024-03-15&rft.volume=42&rft.issue=6&rft.spage=2018&rft.epage=2025&rft.pages=2018-2025&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2023.3328330&rft_dat=%3Cproquest_RIE%3E2947531581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947531581&rft_id=info:pmid/&rft_ieee_id=10301680&rfr_iscdi=true |