Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning

Proportional-integral-derivative(PID) control underlies {>}95\% of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2024-03, Vol.42 (6), p.2018-2025
Hauptverfasser: Shabka, Zacharaya, Enrico, Michael, Almeida, Paulo, Parsons, Nick, Zervas, Georgios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2025
container_issue 6
container_start_page 2018
container_title Journal of lightwave technology
container_volume 42
creator Shabka, Zacharaya
Enrico, Michael
Almeida, Paulo
Parsons, Nick
Zervas, Georgios
description Proportional-integral-derivative(PID) control underlies {>}95\% of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability for optical switches) PID control requires three parameters to be optimally tuned (aka PID tuning). Typical PID tuning methods involve slow, exhaustive and often hands-on search processes which waste engineering resources and slow down production. Moreover, manufacturing tolerances in production mean that actuators are non-identical and so controlled differently by the same PID parameters. This work presents a novel PID parameter optimisation method (patent pending) based on deep reinforcement learning which avoids tuning procedures altogether whilst improving switching performance. On a market leading optical switching product based on electromechanical control processes, compared against the manufacturer's production parameter set, average switching speed is improved 22% whilst 5\times more (17.5% to 87.5%) switching events stabilise in \leq \text{20}\,\text{ms} (the ideal worst-case performance) without any practical deterioration in other performance metrics such as overshoot. The method also generates actuator-tailored PID parameters in \mathbf {O}(milliseconds) without any interaction with the device using only generic information about the actuator (known from manufacturing and characterisation processes). This renders the method highly applicable to mass-manufacturing scenarios generally. Training is achieved with just a small number of actuators and can generally complete in \mathbf {O}(hours), so can be easily repeated if needed (e.g. if new hardware is built using entirely different types of actuators).
doi_str_mv 10.1109/JLT.2023.3328330
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10301680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10301680</ieee_id><sourcerecordid>2947531581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-cb802345adaf641829c509bc410653bbf90dc2cc3d6cfe1ea16c7eaa8e6e52f23</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xZ-KMqHwrUhEtYrQc50JdpXFxXCH-PS7twHTS3fPenR6ELimZUErKm5dqMWGE8QnnTHFOjtCISqkyxig_RiNScJ6pgolTdDYMK0KoEKoYIf0afLO10fk-m1vTmboDPPV9DL7Ds010azeY3RS3Pvw1EoTn3y7apes_8YeLS3wHsMFv4PrEWFhDH3EFJvQJOEcnrekGuDjUMXp_uF9Mn7Jq9vg8va0yy4SMma1V-l1I05g2F1Sx0kpS1lZQkkte121JGsus5U1uW6BgaG4LMEZBDpK1jI_R9X7vJvivLQxRr_w29OmkZqUoJKdS0USRPWWDH4YArd4EtzbhR1Oidxp10qh3GvVBY4pc7SMOAP7hnNBcEf4LG-Bvyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947531581</pqid></control><display><type>article</type><title>Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Shabka, Zacharaya ; Enrico, Michael ; Almeida, Paulo ; Parsons, Nick ; Zervas, Georgios</creator><creatorcontrib>Shabka, Zacharaya ; Enrico, Michael ; Almeida, Paulo ; Parsons, Nick ; Zervas, Georgios</creatorcontrib><description><![CDATA[Proportional-integral-derivative(PID) control underlies <inline-formula><tex-math notation="LaTeX">{>}95\%</tex-math></inline-formula> of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability for optical switches) PID control requires three parameters to be optimally tuned (aka PID tuning). Typical PID tuning methods involve slow, exhaustive and often hands-on search processes which waste engineering resources and slow down production. Moreover, manufacturing tolerances in production mean that actuators are non-identical and so controlled differently by the same PID parameters. This work presents a novel PID parameter optimisation method (patent pending) based on deep reinforcement learning which avoids tuning procedures altogether whilst improving switching performance. On a market leading optical switching product based on electromechanical control processes, compared against the manufacturer's production parameter set, average switching speed is improved 22% whilst <inline-formula><tex-math notation="LaTeX">5\times</tex-math></inline-formula> more (17.5% to 87.5%) switching events stabilise in <inline-formula><tex-math notation="LaTeX">\leq \text{20}\,\text{ms}</tex-math></inline-formula> (the ideal worst-case performance) without any practical deterioration in other performance metrics such as overshoot. The method also generates actuator-tailored PID parameters in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(milliseconds)</tex-math></inline-formula> without any interaction with the device using only generic information about the actuator (known from manufacturing and characterisation processes). This renders the method highly applicable to mass-manufacturing scenarios generally. Training is achieved with just a small number of actuators and can generally complete in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(hours)</tex-math></inline-formula>, so can be easily repeated if needed (e.g. if new hardware is built using entirely different types of actuators).]]></description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2023.3328330</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Beam steering ; Business metrics ; Control systems ; Deep learning ; IEEE ; IEEEtran ; lATEX ; Manufacturing ; Optical switches ; Optical switching ; Optimization ; Parameters ; Performance measurement ; Piezoelectric actuators ; Process control ; Production ; Proportional integral derivative ; Switches ; template ; Tolerances ; Tuning</subject><ispartof>Journal of lightwave technology, 2024-03, Vol.42 (6), p.2018-2025</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-cb802345adaf641829c509bc410653bbf90dc2cc3d6cfe1ea16c7eaa8e6e52f23</cites><orcidid>0000-0001-6702-5059 ; 0000-0001-5587-9401 ; 0000-0003-1519-0604 ; 0000-0002-9137-570X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10301680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10301680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shabka, Zacharaya</creatorcontrib><creatorcontrib>Enrico, Michael</creatorcontrib><creatorcontrib>Almeida, Paulo</creatorcontrib><creatorcontrib>Parsons, Nick</creatorcontrib><creatorcontrib>Zervas, Georgios</creatorcontrib><title>Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description><![CDATA[Proportional-integral-derivative(PID) control underlies <inline-formula><tex-math notation="LaTeX">{>}95\%</tex-math></inline-formula> of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability for optical switches) PID control requires three parameters to be optimally tuned (aka PID tuning). Typical PID tuning methods involve slow, exhaustive and often hands-on search processes which waste engineering resources and slow down production. Moreover, manufacturing tolerances in production mean that actuators are non-identical and so controlled differently by the same PID parameters. This work presents a novel PID parameter optimisation method (patent pending) based on deep reinforcement learning which avoids tuning procedures altogether whilst improving switching performance. On a market leading optical switching product based on electromechanical control processes, compared against the manufacturer's production parameter set, average switching speed is improved 22% whilst <inline-formula><tex-math notation="LaTeX">5\times</tex-math></inline-formula> more (17.5% to 87.5%) switching events stabilise in <inline-formula><tex-math notation="LaTeX">\leq \text{20}\,\text{ms}</tex-math></inline-formula> (the ideal worst-case performance) without any practical deterioration in other performance metrics such as overshoot. The method also generates actuator-tailored PID parameters in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(milliseconds)</tex-math></inline-formula> without any interaction with the device using only generic information about the actuator (known from manufacturing and characterisation processes). This renders the method highly applicable to mass-manufacturing scenarios generally. Training is achieved with just a small number of actuators and can generally complete in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(hours)</tex-math></inline-formula>, so can be easily repeated if needed (e.g. if new hardware is built using entirely different types of actuators).]]></description><subject>Actuators</subject><subject>Beam steering</subject><subject>Business metrics</subject><subject>Control systems</subject><subject>Deep learning</subject><subject>IEEE</subject><subject>IEEEtran</subject><subject>lATEX</subject><subject>Manufacturing</subject><subject>Optical switches</subject><subject>Optical switching</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance measurement</subject><subject>Piezoelectric actuators</subject><subject>Process control</subject><subject>Production</subject><subject>Proportional integral derivative</subject><subject>Switches</subject><subject>template</subject><subject>Tolerances</subject><subject>Tuning</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xZ-KMqHwrUhEtYrQc50JdpXFxXCH-PS7twHTS3fPenR6ELimZUErKm5dqMWGE8QnnTHFOjtCISqkyxig_RiNScJ6pgolTdDYMK0KoEKoYIf0afLO10fk-m1vTmboDPPV9DL7Ds010azeY3RS3Pvw1EoTn3y7apes_8YeLS3wHsMFv4PrEWFhDH3EFJvQJOEcnrekGuDjUMXp_uF9Mn7Jq9vg8va0yy4SMma1V-l1I05g2F1Sx0kpS1lZQkkte121JGsus5U1uW6BgaG4LMEZBDpK1jI_R9X7vJvivLQxRr_w29OmkZqUoJKdS0USRPWWDH4YArd4EtzbhR1Oidxp10qh3GvVBY4pc7SMOAP7hnNBcEf4LG-Bvyg</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Shabka, Zacharaya</creator><creator>Enrico, Michael</creator><creator>Almeida, Paulo</creator><creator>Parsons, Nick</creator><creator>Zervas, Georgios</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6702-5059</orcidid><orcidid>https://orcid.org/0000-0001-5587-9401</orcidid><orcidid>https://orcid.org/0000-0003-1519-0604</orcidid><orcidid>https://orcid.org/0000-0002-9137-570X</orcidid></search><sort><creationdate>20240315</creationdate><title>Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning</title><author>Shabka, Zacharaya ; Enrico, Michael ; Almeida, Paulo ; Parsons, Nick ; Zervas, Georgios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-cb802345adaf641829c509bc410653bbf90dc2cc3d6cfe1ea16c7eaa8e6e52f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Beam steering</topic><topic>Business metrics</topic><topic>Control systems</topic><topic>Deep learning</topic><topic>IEEE</topic><topic>IEEEtran</topic><topic>lATEX</topic><topic>Manufacturing</topic><topic>Optical switches</topic><topic>Optical switching</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance measurement</topic><topic>Piezoelectric actuators</topic><topic>Process control</topic><topic>Production</topic><topic>Proportional integral derivative</topic><topic>Switches</topic><topic>template</topic><topic>Tolerances</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabka, Zacharaya</creatorcontrib><creatorcontrib>Enrico, Michael</creatorcontrib><creatorcontrib>Almeida, Paulo</creatorcontrib><creatorcontrib>Parsons, Nick</creatorcontrib><creatorcontrib>Zervas, Georgios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shabka, Zacharaya</au><au>Enrico, Michael</au><au>Almeida, Paulo</au><au>Parsons, Nick</au><au>Zervas, Georgios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2024-03-15</date><risdate>2024</risdate><volume>42</volume><issue>6</issue><spage>2018</spage><epage>2025</epage><pages>2018-2025</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract><![CDATA[Proportional-integral-derivative(PID) control underlies <inline-formula><tex-math notation="LaTeX">{>}95\%</tex-math></inline-formula> of automation across many industries including high-radix optical circuit switches based on PID-controlled piezoelectric-actuator-based beam steering. To meet performance metric requirements (switching speed and actuator stability for optical switches) PID control requires three parameters to be optimally tuned (aka PID tuning). Typical PID tuning methods involve slow, exhaustive and often hands-on search processes which waste engineering resources and slow down production. Moreover, manufacturing tolerances in production mean that actuators are non-identical and so controlled differently by the same PID parameters. This work presents a novel PID parameter optimisation method (patent pending) based on deep reinforcement learning which avoids tuning procedures altogether whilst improving switching performance. On a market leading optical switching product based on electromechanical control processes, compared against the manufacturer's production parameter set, average switching speed is improved 22% whilst <inline-formula><tex-math notation="LaTeX">5\times</tex-math></inline-formula> more (17.5% to 87.5%) switching events stabilise in <inline-formula><tex-math notation="LaTeX">\leq \text{20}\,\text{ms}</tex-math></inline-formula> (the ideal worst-case performance) without any practical deterioration in other performance metrics such as overshoot. The method also generates actuator-tailored PID parameters in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(milliseconds)</tex-math></inline-formula> without any interaction with the device using only generic information about the actuator (known from manufacturing and characterisation processes). This renders the method highly applicable to mass-manufacturing scenarios generally. Training is achieved with just a small number of actuators and can generally complete in <inline-formula><tex-math notation="LaTeX">\mathbf {O}(hours)</tex-math></inline-formula>, so can be easily repeated if needed (e.g. if new hardware is built using entirely different types of actuators).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2023.3328330</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6702-5059</orcidid><orcidid>https://orcid.org/0000-0001-5587-9401</orcidid><orcidid>https://orcid.org/0000-0003-1519-0604</orcidid><orcidid>https://orcid.org/0000-0002-9137-570X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2024-03, Vol.42 (6), p.2018-2025
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_10301680
source IEEE Electronic Library (IEL)
subjects Actuators
Beam steering
Business metrics
Control systems
Deep learning
IEEE
IEEEtran
lATEX
Manufacturing
Optical switches
Optical switching
Optimization
Parameters
Performance measurement
Piezoelectric actuators
Process control
Production
Proportional integral derivative
Switches
template
Tolerances
Tuning
title Production-Scalable Control Optimisation for Optical Switching With Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production-Scalable%20Control%20Optimisation%20for%20Optical%20Switching%20With%20Deep%20Reinforcement%20Learning&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Shabka,%20Zacharaya&rft.date=2024-03-15&rft.volume=42&rft.issue=6&rft.spage=2018&rft.epage=2025&rft.pages=2018-2025&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2023.3328330&rft_dat=%3Cproquest_RIE%3E2947531581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947531581&rft_id=info:pmid/&rft_ieee_id=10301680&rfr_iscdi=true