Deployment-Friendly Link Adaptation in Wireless Local-Area Network Based on On-Line Reinforcement Learning

In this letter, based on outer loop link adaptation (OLLA), we propose an adaptive OLLA algorithm (AOLLA), which calculates the OLLA offset adapted to the current wireless channel environment in real-time by utilizing frequency statistics of packet error within the last observation window. AOLLA alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2023-12, Vol.27 (12), p.3424-3428
Hauptverfasser: Chen, Jie, Ma, Juntao, He, Yihao, Wu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3428
container_issue 12
container_start_page 3424
container_title IEEE communications letters
container_volume 27
creator Chen, Jie
Ma, Juntao
He, Yihao
Wu, Gang
description In this letter, based on outer loop link adaptation (OLLA), we propose an adaptive OLLA algorithm (AOLLA), which calculates the OLLA offset adapted to the current wireless channel environment in real-time by utilizing frequency statistics of packet error within the last observation window. AOLLA algorithm contains numerous parameters that require manual tuning, which raises the deployment difficulty of the algorithm. An online reinforcement learning algorithm is designed to tune the parameters automatically and allow the AOLLA algorithm to rapidly deploy in different environments. We worked out an experimental validation by deploying the proposed algorithm on a software-defined radio hardware platform in three typical scenarios for deploying a wireless local-area network using IEEE 802.11ax standard with its original HESU packet format. Experimental results show that our designed algorithm has a 59.6% performance improvement compared to the original OLLA.
doi_str_mv 10.1109/LCOMM.2023.3327964
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10299668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10299668</ieee_id><sourcerecordid>2901194671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-9e941f6043e7b7656fff8e3451658425ac18615caccb4559388ca1b1cd9261df3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt_QDwEPG_NxyabHGu1KmwtiOJxSbMTSbvN1mSL9N-7tT14mZnD-7wDD0LXlIwoJfqunMxnsxEjjI84Z4WW-QkaUCFUxvpx2t9E6awotDpHFyktCSGKCTpAywfYNO1uDaHLptFDqJsdLn1Y4XFtNp3pfBuwD_jTR2ggJVy21jTZOILBr9D9tHGF702CGve5ech6FPAb-ODaaGFfi0swMfjwdYnOnGkSXB33EH1MH98nz1k5f3qZjMvMMi27TIPOqZMk51AsCimkc04BzwWVQuVMGEuVpMIaaxe5EJorZQ1dUFtrJmnt-BDdHno3sf3eQuqqZbuNoX9ZMU0o1bksaJ9ih5SNbUoRXLWJfm3irqKk2jut_pxWe6fV0WkP3RwgDwD_AKa1lIr_AgIgcxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901194671</pqid></control><display><type>article</type><title>Deployment-Friendly Link Adaptation in Wireless Local-Area Network Based on On-Line Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jie ; Ma, Juntao ; He, Yihao ; Wu, Gang</creator><creatorcontrib>Chen, Jie ; Ma, Juntao ; He, Yihao ; Wu, Gang</creatorcontrib><description>In this letter, based on outer loop link adaptation (OLLA), we propose an adaptive OLLA algorithm (AOLLA), which calculates the OLLA offset adapted to the current wireless channel environment in real-time by utilizing frequency statistics of packet error within the last observation window. AOLLA algorithm contains numerous parameters that require manual tuning, which raises the deployment difficulty of the algorithm. An online reinforcement learning algorithm is designed to tune the parameters automatically and allow the AOLLA algorithm to rapidly deploy in different environments. We worked out an experimental validation by deploying the proposed algorithm on a software-defined radio hardware platform in three typical scenarios for deploying a wireless local-area network using IEEE 802.11ax standard with its original HESU packet format. Experimental results show that our designed algorithm has a 59.6% performance improvement compared to the original OLLA.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2023.3327964</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptive algorithms ; Error analysis ; fading channel ; Fading channels ; Heuristic algorithms ; Local area networks ; Machine learning ; outer loop link adaptation ; Parameters ; Q-learning ; reinforcement learning ; Signal to noise ratio ; Software radio ; Stochastic processes ; Wireless communication ; Wireless networks</subject><ispartof>IEEE communications letters, 2023-12, Vol.27 (12), p.3424-3428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-9e941f6043e7b7656fff8e3451658425ac18615caccb4559388ca1b1cd9261df3</citedby><cites>FETCH-LOGICAL-c296t-9e941f6043e7b7656fff8e3451658425ac18615caccb4559388ca1b1cd9261df3</cites><orcidid>0000-0002-7367-3308 ; 0000-0002-3163-4132 ; 0000-0002-0394-2461 ; 0000-0001-9595-527X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10299668$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10299668$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Ma, Juntao</creatorcontrib><creatorcontrib>He, Yihao</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><title>Deployment-Friendly Link Adaptation in Wireless Local-Area Network Based on On-Line Reinforcement Learning</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>In this letter, based on outer loop link adaptation (OLLA), we propose an adaptive OLLA algorithm (AOLLA), which calculates the OLLA offset adapted to the current wireless channel environment in real-time by utilizing frequency statistics of packet error within the last observation window. AOLLA algorithm contains numerous parameters that require manual tuning, which raises the deployment difficulty of the algorithm. An online reinforcement learning algorithm is designed to tune the parameters automatically and allow the AOLLA algorithm to rapidly deploy in different environments. We worked out an experimental validation by deploying the proposed algorithm on a software-defined radio hardware platform in three typical scenarios for deploying a wireless local-area network using IEEE 802.11ax standard with its original HESU packet format. Experimental results show that our designed algorithm has a 59.6% performance improvement compared to the original OLLA.</description><subject>Adaptation</subject><subject>Adaptive algorithms</subject><subject>Error analysis</subject><subject>fading channel</subject><subject>Fading channels</subject><subject>Heuristic algorithms</subject><subject>Local area networks</subject><subject>Machine learning</subject><subject>outer loop link adaptation</subject><subject>Parameters</subject><subject>Q-learning</subject><subject>reinforcement learning</subject><subject>Signal to noise ratio</subject><subject>Software radio</subject><subject>Stochastic processes</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt_QDwEPG_NxyabHGu1KmwtiOJxSbMTSbvN1mSL9N-7tT14mZnD-7wDD0LXlIwoJfqunMxnsxEjjI84Z4WW-QkaUCFUxvpx2t9E6awotDpHFyktCSGKCTpAywfYNO1uDaHLptFDqJsdLn1Y4XFtNp3pfBuwD_jTR2ggJVy21jTZOILBr9D9tHGF702CGve5ech6FPAb-ODaaGFfi0swMfjwdYnOnGkSXB33EH1MH98nz1k5f3qZjMvMMi27TIPOqZMk51AsCimkc04BzwWVQuVMGEuVpMIaaxe5EJorZQ1dUFtrJmnt-BDdHno3sf3eQuqqZbuNoX9ZMU0o1bksaJ9ih5SNbUoRXLWJfm3irqKk2jut_pxWe6fV0WkP3RwgDwD_AKa1lIr_AgIgcxI</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chen, Jie</creator><creator>Ma, Juntao</creator><creator>He, Yihao</creator><creator>Wu, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7367-3308</orcidid><orcidid>https://orcid.org/0000-0002-3163-4132</orcidid><orcidid>https://orcid.org/0000-0002-0394-2461</orcidid><orcidid>https://orcid.org/0000-0001-9595-527X</orcidid></search><sort><creationdate>20231201</creationdate><title>Deployment-Friendly Link Adaptation in Wireless Local-Area Network Based on On-Line Reinforcement Learning</title><author>Chen, Jie ; Ma, Juntao ; He, Yihao ; Wu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-9e941f6043e7b7656fff8e3451658425ac18615caccb4559388ca1b1cd9261df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Adaptive algorithms</topic><topic>Error analysis</topic><topic>fading channel</topic><topic>Fading channels</topic><topic>Heuristic algorithms</topic><topic>Local area networks</topic><topic>Machine learning</topic><topic>outer loop link adaptation</topic><topic>Parameters</topic><topic>Q-learning</topic><topic>reinforcement learning</topic><topic>Signal to noise ratio</topic><topic>Software radio</topic><topic>Stochastic processes</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Ma, Juntao</creatorcontrib><creatorcontrib>He, Yihao</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jie</au><au>Ma, Juntao</au><au>He, Yihao</au><au>Wu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deployment-Friendly Link Adaptation in Wireless Local-Area Network Based on On-Line Reinforcement Learning</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>12</issue><spage>3424</spage><epage>3428</epage><pages>3424-3428</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In this letter, based on outer loop link adaptation (OLLA), we propose an adaptive OLLA algorithm (AOLLA), which calculates the OLLA offset adapted to the current wireless channel environment in real-time by utilizing frequency statistics of packet error within the last observation window. AOLLA algorithm contains numerous parameters that require manual tuning, which raises the deployment difficulty of the algorithm. An online reinforcement learning algorithm is designed to tune the parameters automatically and allow the AOLLA algorithm to rapidly deploy in different environments. We worked out an experimental validation by deploying the proposed algorithm on a software-defined radio hardware platform in three typical scenarios for deploying a wireless local-area network using IEEE 802.11ax standard with its original HESU packet format. Experimental results show that our designed algorithm has a 59.6% performance improvement compared to the original OLLA.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2023.3327964</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7367-3308</orcidid><orcidid>https://orcid.org/0000-0002-3163-4132</orcidid><orcidid>https://orcid.org/0000-0002-0394-2461</orcidid><orcidid>https://orcid.org/0000-0001-9595-527X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2023-12, Vol.27 (12), p.3424-3428
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_10299668
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptive algorithms
Error analysis
fading channel
Fading channels
Heuristic algorithms
Local area networks
Machine learning
outer loop link adaptation
Parameters
Q-learning
reinforcement learning
Signal to noise ratio
Software radio
Stochastic processes
Wireless communication
Wireless networks
title Deployment-Friendly Link Adaptation in Wireless Local-Area Network Based on On-Line Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deployment-Friendly%20Link%20Adaptation%20in%20Wireless%20Local-Area%20Network%20Based%20on%20On-Line%20Reinforcement%20Learning&rft.jtitle=IEEE%20communications%20letters&rft.au=Chen,%20Jie&rft.date=2023-12-01&rft.volume=27&rft.issue=12&rft.spage=3424&rft.epage=3428&rft.pages=3424-3428&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2023.3327964&rft_dat=%3Cproquest_RIE%3E2901194671%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901194671&rft_id=info:pmid/&rft_ieee_id=10299668&rfr_iscdi=true