Quickest Change Detection for Unnormalized Statistical Models

Classical quickest change detection algorithms require modeling pre-change and post-change distributions. Such an approach may not be feasible for various machine learning models because of the complexity of computing the explicit distributions. Additionally, these methods may suffer from a lack of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-02, Vol.70 (2), p.1-1
Hauptverfasser: Wu, Suya, Diao, Enmao, Banerjee, Taposh, Ding, Jie, Tarokh, Vahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 2
container_start_page 1
container_title IEEE transactions on information theory
container_volume 70
creator Wu, Suya
Diao, Enmao
Banerjee, Taposh
Ding, Jie
Tarokh, Vahid
description Classical quickest change detection algorithms require modeling pre-change and post-change distributions. Such an approach may not be feasible for various machine learning models because of the complexity of computing the explicit distributions. Additionally, these methods may suffer from a lack of robustness to model mismatch and noise. This paper develops a new variant of the classical Cumulative Sum (CUSUM) algorithm for the quickest change detection. This variant is based on Fisher divergence and the Hyvärinen score and is called the Hyvärinen score-based CUSUM (SCUSUM) algorithm. The SCUSUM algorithm allows the applications of change detection for unnormalized statistical models, i.e., models for which the probability density function contains an unknown normalization constant. The asymptotic optimality of the proposed algorithm is investigated by deriving expressions for average detection delay and the mean running time to a false alarm. Numerical results are provided to demonstrate the performance of the proposed algorithm.
doi_str_mv 10.1109/TIT.2023.3328274
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10298279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10298279</ieee_id><sourcerecordid>2917937052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-537b7350f8357ef65ff26d78e483ddf7a06833951d7243926f9f9d8e14648d913</originalsourceid><addsrcrecordid>eNpNkD1PAzEMhiMEEqWwMzCcxHwln5dkYEDlq1IRQrRzFC4OXLleIEkH-PWkagcmy_Lz2taD0DnBE0KwvlrMFhOKKZswRhWV_ACNiBCy1o3gh2iEMVG15lwdo5OUVqXlgtARun7ZdO0npFxNP-zwDtUtZGhzF4bKh1gthyHEte27X3DVa7a5S7lrbV89BQd9OkVH3vYJzvZ1jJb3d4vpYz1_fphNb-Z1S7nItWDyTTKBvWJCgm-E97RxUgFXzDkvLW4UY1oQJylnmjZee-0UEN5w5TRhY3S52_sVw_emfGtWYROHctJQTaRmEgtaKLyj2hhSiuDNV-zWNv4Ygs1WkimSzFaS2UsqkYtdpAOAfzjVZazZH2tQYWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917937052</pqid></control><display><type>article</type><title>Quickest Change Detection for Unnormalized Statistical Models</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Suya ; Diao, Enmao ; Banerjee, Taposh ; Ding, Jie ; Tarokh, Vahid</creator><creatorcontrib>Wu, Suya ; Diao, Enmao ; Banerjee, Taposh ; Ding, Jie ; Tarokh, Vahid</creatorcontrib><description>Classical quickest change detection algorithms require modeling pre-change and post-change distributions. Such an approach may not be feasible for various machine learning models because of the complexity of computing the explicit distributions. Additionally, these methods may suffer from a lack of robustness to model mismatch and noise. This paper develops a new variant of the classical Cumulative Sum (CUSUM) algorithm for the quickest change detection. This variant is based on Fisher divergence and the Hyvärinen score and is called the Hyvärinen score-based CUSUM (SCUSUM) algorithm. The SCUSUM algorithm allows the applications of change detection for unnormalized statistical models, i.e., models for which the probability density function contains an unknown normalization constant. The asymptotic optimality of the proposed algorithm is investigated by deriving expressions for average detection delay and the mean running time to a false alarm. Numerical results are provided to demonstrate the performance of the proposed algorithm.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3328274</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Change detection ; Change detection algorithms ; Computational modeling ; CUSUM ; Delays ; Detection algorithms ; Divergence ; False alarms ; Fisher divergence ; Machine learning ; Numerical models ; Probability density functions ; Quickest change detection ; Random variables ; Robustness (mathematics) ; Score matching ; Statistical analysis ; Statistical models ; Unnormalized models</subject><ispartof>IEEE transactions on information theory, 2024-02, Vol.70 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-537b7350f8357ef65ff26d78e483ddf7a06833951d7243926f9f9d8e14648d913</cites><orcidid>0000-0003-4163-6913 ; 0000-0002-3584-6140 ; 0000-0002-5383-0900 ; 0000-0003-2994-6302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10298279$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10298279$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Suya</creatorcontrib><creatorcontrib>Diao, Enmao</creatorcontrib><creatorcontrib>Banerjee, Taposh</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Tarokh, Vahid</creatorcontrib><title>Quickest Change Detection for Unnormalized Statistical Models</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Classical quickest change detection algorithms require modeling pre-change and post-change distributions. Such an approach may not be feasible for various machine learning models because of the complexity of computing the explicit distributions. Additionally, these methods may suffer from a lack of robustness to model mismatch and noise. This paper develops a new variant of the classical Cumulative Sum (CUSUM) algorithm for the quickest change detection. This variant is based on Fisher divergence and the Hyvärinen score and is called the Hyvärinen score-based CUSUM (SCUSUM) algorithm. The SCUSUM algorithm allows the applications of change detection for unnormalized statistical models, i.e., models for which the probability density function contains an unknown normalization constant. The asymptotic optimality of the proposed algorithm is investigated by deriving expressions for average detection delay and the mean running time to a false alarm. Numerical results are provided to demonstrate the performance of the proposed algorithm.</description><subject>Algorithms</subject><subject>Change detection</subject><subject>Change detection algorithms</subject><subject>Computational modeling</subject><subject>CUSUM</subject><subject>Delays</subject><subject>Detection algorithms</subject><subject>Divergence</subject><subject>False alarms</subject><subject>Fisher divergence</subject><subject>Machine learning</subject><subject>Numerical models</subject><subject>Probability density functions</subject><subject>Quickest change detection</subject><subject>Random variables</subject><subject>Robustness (mathematics)</subject><subject>Score matching</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Unnormalized models</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PAzEMhiMEEqWwMzCcxHwln5dkYEDlq1IRQrRzFC4OXLleIEkH-PWkagcmy_Lz2taD0DnBE0KwvlrMFhOKKZswRhWV_ACNiBCy1o3gh2iEMVG15lwdo5OUVqXlgtARun7ZdO0npFxNP-zwDtUtZGhzF4bKh1gthyHEte27X3DVa7a5S7lrbV89BQd9OkVH3vYJzvZ1jJb3d4vpYz1_fphNb-Z1S7nItWDyTTKBvWJCgm-E97RxUgFXzDkvLW4UY1oQJylnmjZee-0UEN5w5TRhY3S52_sVw_emfGtWYROHctJQTaRmEgtaKLyj2hhSiuDNV-zWNv4Ygs1WkimSzFaS2UsqkYtdpAOAfzjVZazZH2tQYWY</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wu, Suya</creator><creator>Diao, Enmao</creator><creator>Banerjee, Taposh</creator><creator>Ding, Jie</creator><creator>Tarokh, Vahid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4163-6913</orcidid><orcidid>https://orcid.org/0000-0002-3584-6140</orcidid><orcidid>https://orcid.org/0000-0002-5383-0900</orcidid><orcidid>https://orcid.org/0000-0003-2994-6302</orcidid></search><sort><creationdate>20240201</creationdate><title>Quickest Change Detection for Unnormalized Statistical Models</title><author>Wu, Suya ; Diao, Enmao ; Banerjee, Taposh ; Ding, Jie ; Tarokh, Vahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-537b7350f8357ef65ff26d78e483ddf7a06833951d7243926f9f9d8e14648d913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Change detection</topic><topic>Change detection algorithms</topic><topic>Computational modeling</topic><topic>CUSUM</topic><topic>Delays</topic><topic>Detection algorithms</topic><topic>Divergence</topic><topic>False alarms</topic><topic>Fisher divergence</topic><topic>Machine learning</topic><topic>Numerical models</topic><topic>Probability density functions</topic><topic>Quickest change detection</topic><topic>Random variables</topic><topic>Robustness (mathematics)</topic><topic>Score matching</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Unnormalized models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Suya</creatorcontrib><creatorcontrib>Diao, Enmao</creatorcontrib><creatorcontrib>Banerjee, Taposh</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Tarokh, Vahid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Suya</au><au>Diao, Enmao</au><au>Banerjee, Taposh</au><au>Ding, Jie</au><au>Tarokh, Vahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quickest Change Detection for Unnormalized Statistical Models</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Classical quickest change detection algorithms require modeling pre-change and post-change distributions. Such an approach may not be feasible for various machine learning models because of the complexity of computing the explicit distributions. Additionally, these methods may suffer from a lack of robustness to model mismatch and noise. This paper develops a new variant of the classical Cumulative Sum (CUSUM) algorithm for the quickest change detection. This variant is based on Fisher divergence and the Hyvärinen score and is called the Hyvärinen score-based CUSUM (SCUSUM) algorithm. The SCUSUM algorithm allows the applications of change detection for unnormalized statistical models, i.e., models for which the probability density function contains an unknown normalization constant. The asymptotic optimality of the proposed algorithm is investigated by deriving expressions for average detection delay and the mean running time to a false alarm. Numerical results are provided to demonstrate the performance of the proposed algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3328274</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4163-6913</orcidid><orcidid>https://orcid.org/0000-0002-3584-6140</orcidid><orcidid>https://orcid.org/0000-0002-5383-0900</orcidid><orcidid>https://orcid.org/0000-0003-2994-6302</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-02, Vol.70 (2), p.1-1
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_10298279
source IEEE Electronic Library (IEL)
subjects Algorithms
Change detection
Change detection algorithms
Computational modeling
CUSUM
Delays
Detection algorithms
Divergence
False alarms
Fisher divergence
Machine learning
Numerical models
Probability density functions
Quickest change detection
Random variables
Robustness (mathematics)
Score matching
Statistical analysis
Statistical models
Unnormalized models
title Quickest Change Detection for Unnormalized Statistical Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quickest%20Change%20Detection%20for%20Unnormalized%20Statistical%20Models&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wu,%20Suya&rft.date=2024-02-01&rft.volume=70&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3328274&rft_dat=%3Cproquest_RIE%3E2917937052%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917937052&rft_id=info:pmid/&rft_ieee_id=10298279&rfr_iscdi=true