5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities

This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.120983-120996
Hauptverfasser: Pandey, Chandrasen, Tiwari, Vaibhav, Imoize, Agbotiname Lucky, Li, Chun-Ta, Lee, Cheng-Chi, Roy, Diptendu Sinha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120996
container_issue
container_start_page 120983
container_title IEEE access
container_volume 11
creator Pandey, Chandrasen
Tiwari, Vaibhav
Imoize, Agbotiname Lucky
Li, Chun-Ta
Lee, Cheng-Chi
Roy, Diptendu Sinha
description This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic data becomes a crucial aspect for effectively deploying AI-driven systems in real-world scenarios. 5GT-GAN integrates unsupervised GAN schemes with the ability to manage temporal dynamics through supervised autoregressive models, successfully generating large-scale synthetic mobile Internet traffic data. Our experimental results illustrate the superior performance of 5GT-GAN in terms of mean squared error (MSE) and mean absolute error (MAE) compared to traditional models. The use of "Train Synthetic Test Real" (TSTR) and "Train Real Test Synthetic" (TRTS) methodologies affirmed the model's effectiveness with (0.0023 MAE, 0.0074 MSE) and (0.0045 MAE, 0.0092 MSE) respectively. Moreover, the model's runtime complexity of O(n log n) emphasized its efficiency in handling larger datasets, an edge over traditional models. The study also identifies potential future work in augmenting data for traffic prediction and integrating self-attention mechanisms to enhance the capabilities of the model further.
doi_str_mv 10.1109/ACCESS.2023.3328170
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10298233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10298233</ieee_id><doaj_id>oai_doaj_org_article_df1b3f260362408f9e71b0625a80829a</doaj_id><sourcerecordid>2887113811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-fbf82ffe3c5b344617b1ffaf7916fbd3b1704c4ef91ef0d2614eaf41491ee0ea3</originalsourceid><addsrcrecordid>eNpNUU1v2zAMFYoVaJH1F2wHATs7lUR_yLsFnpcV6NZD2kNPgmSTmYLEyvxx6L-fUgdFCBAUCb6nRzzGvkixlFKU96uqqjebpRIKlgBKy0JcsVsl8zKBDPJPF-8bdjcMOxFDx1FW3LLXbP2crFd_vvO6-2u7xndb_sOOlq-m7QG70Y4-dJxCz7N1UnfW7bHlv4Pze-R1u0VehcNxGk8w3_HNwfYjr_zocfjMrsnuB7w71wV7-Vk_V7-Sx6f1Q7V6TBrIyjEhR1oRITSZgzTNZeEkkaWilDm5Flw8J21SpFIiiVblMkVLqUxjjwItLNjDzNsGuzPH3kcNbyZYb94Hod-aKMo3ezQtSQekcgG5SoWmEgvpRK4yq4VW5Ynr28x17MO_CYfR7MLUd1G-UVoXUoKOuWAwbzV9GIYe6eNXKczJEjNbYk6WmLMlEfV1RnlEvECoUisA-A-rroVq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887113811</pqid></control><display><type>article</type><title>5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pandey, Chandrasen ; Tiwari, Vaibhav ; Imoize, Agbotiname Lucky ; Li, Chun-Ta ; Lee, Cheng-Chi ; Roy, Diptendu Sinha</creator><creatorcontrib>Pandey, Chandrasen ; Tiwari, Vaibhav ; Imoize, Agbotiname Lucky ; Li, Chun-Ta ; Lee, Cheng-Chi ; Roy, Diptendu Sinha</creatorcontrib><description>This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic data becomes a crucial aspect for effectively deploying AI-driven systems in real-world scenarios. 5GT-GAN integrates unsupervised GAN schemes with the ability to manage temporal dynamics through supervised autoregressive models, successfully generating large-scale synthetic mobile Internet traffic data. Our experimental results illustrate the superior performance of 5GT-GAN in terms of mean squared error (MSE) and mean absolute error (MAE) compared to traditional models. The use of "Train Synthetic Test Real" (TSTR) and "Train Real Test Synthetic" (TRTS) methodologies affirmed the model's effectiveness with (0.0023 MAE, 0.0074 MSE) and (0.0045 MAE, 0.0092 MSE) respectively. Moreover, the model's runtime complexity of O(n log n) emphasized its efficiency in handling larger datasets, an edge over traditional models. The study also identifies potential future work in augmenting data for traffic prediction and integrating self-attention mechanisms to enhance the capabilities of the model further.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3328170</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5GT-GAN ; Artificial intelligence ; Autoregressive models ; Cities ; Data augmentation ; Data models ; Data privacy ; Edge computing ; Generative adversarial networks ; Internet ; Internet of Things ; Internet of Things (IoT) ; Mobile computing ; multi-access edge computing (MEC) ; Smart cities ; smart city ; Synthetic data ; System effectiveness</subject><ispartof>IEEE access, 2023, Vol.11, p.120983-120996</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-fbf82ffe3c5b344617b1ffaf7916fbd3b1704c4ef91ef0d2614eaf41491ee0ea3</cites><orcidid>0000-0003-0205-0514 ; 0000-0002-8918-1703 ; 0000-0001-8921-8353 ; 0000-0003-0637-5666 ; 0000-0002-7031-1619 ; 0000-0001-9731-2534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10298233$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27616,27906,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Pandey, Chandrasen</creatorcontrib><creatorcontrib>Tiwari, Vaibhav</creatorcontrib><creatorcontrib>Imoize, Agbotiname Lucky</creatorcontrib><creatorcontrib>Li, Chun-Ta</creatorcontrib><creatorcontrib>Lee, Cheng-Chi</creatorcontrib><creatorcontrib>Roy, Diptendu Sinha</creatorcontrib><title>5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic data becomes a crucial aspect for effectively deploying AI-driven systems in real-world scenarios. 5GT-GAN integrates unsupervised GAN schemes with the ability to manage temporal dynamics through supervised autoregressive models, successfully generating large-scale synthetic mobile Internet traffic data. Our experimental results illustrate the superior performance of 5GT-GAN in terms of mean squared error (MSE) and mean absolute error (MAE) compared to traditional models. The use of "Train Synthetic Test Real" (TSTR) and "Train Real Test Synthetic" (TRTS) methodologies affirmed the model's effectiveness with (0.0023 MAE, 0.0074 MSE) and (0.0045 MAE, 0.0092 MSE) respectively. Moreover, the model's runtime complexity of O(n log n) emphasized its efficiency in handling larger datasets, an edge over traditional models. The study also identifies potential future work in augmenting data for traffic prediction and integrating self-attention mechanisms to enhance the capabilities of the model further.</description><subject>5G mobile communication</subject><subject>5GT-GAN</subject><subject>Artificial intelligence</subject><subject>Autoregressive models</subject><subject>Cities</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Edge computing</subject><subject>Generative adversarial networks</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Mobile computing</subject><subject>multi-access edge computing (MEC)</subject><subject>Smart cities</subject><subject>smart city</subject><subject>Synthetic data</subject><subject>System effectiveness</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMFYoVaJH1F2wHATs7lUR_yLsFnpcV6NZD2kNPgmSTmYLEyvxx6L-fUgdFCBAUCb6nRzzGvkixlFKU96uqqjebpRIKlgBKy0JcsVsl8zKBDPJPF-8bdjcMOxFDx1FW3LLXbP2crFd_vvO6-2u7xndb_sOOlq-m7QG70Y4-dJxCz7N1UnfW7bHlv4Pze-R1u0VehcNxGk8w3_HNwfYjr_zocfjMrsnuB7w71wV7-Vk_V7-Sx6f1Q7V6TBrIyjEhR1oRITSZgzTNZeEkkaWilDm5Flw8J21SpFIiiVblMkVLqUxjjwItLNjDzNsGuzPH3kcNbyZYb94Hod-aKMo3ezQtSQekcgG5SoWmEgvpRK4yq4VW5Ynr28x17MO_CYfR7MLUd1G-UVoXUoKOuWAwbzV9GIYe6eNXKczJEjNbYk6WmLMlEfV1RnlEvECoUisA-A-rroVq</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pandey, Chandrasen</creator><creator>Tiwari, Vaibhav</creator><creator>Imoize, Agbotiname Lucky</creator><creator>Li, Chun-Ta</creator><creator>Lee, Cheng-Chi</creator><creator>Roy, Diptendu Sinha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0205-0514</orcidid><orcidid>https://orcid.org/0000-0002-8918-1703</orcidid><orcidid>https://orcid.org/0000-0001-8921-8353</orcidid><orcidid>https://orcid.org/0000-0003-0637-5666</orcidid><orcidid>https://orcid.org/0000-0002-7031-1619</orcidid><orcidid>https://orcid.org/0000-0001-9731-2534</orcidid></search><sort><creationdate>2023</creationdate><title>5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities</title><author>Pandey, Chandrasen ; Tiwari, Vaibhav ; Imoize, Agbotiname Lucky ; Li, Chun-Ta ; Lee, Cheng-Chi ; Roy, Diptendu Sinha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-fbf82ffe3c5b344617b1ffaf7916fbd3b1704c4ef91ef0d2614eaf41491ee0ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>5GT-GAN</topic><topic>Artificial intelligence</topic><topic>Autoregressive models</topic><topic>Cities</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Edge computing</topic><topic>Generative adversarial networks</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Mobile computing</topic><topic>multi-access edge computing (MEC)</topic><topic>Smart cities</topic><topic>smart city</topic><topic>Synthetic data</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Chandrasen</creatorcontrib><creatorcontrib>Tiwari, Vaibhav</creatorcontrib><creatorcontrib>Imoize, Agbotiname Lucky</creatorcontrib><creatorcontrib>Li, Chun-Ta</creatorcontrib><creatorcontrib>Lee, Cheng-Chi</creatorcontrib><creatorcontrib>Roy, Diptendu Sinha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Chandrasen</au><au>Tiwari, Vaibhav</au><au>Imoize, Agbotiname Lucky</au><au>Li, Chun-Ta</au><au>Lee, Cheng-Chi</au><au>Roy, Diptendu Sinha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>120983</spage><epage>120996</epage><pages>120983-120996</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic data becomes a crucial aspect for effectively deploying AI-driven systems in real-world scenarios. 5GT-GAN integrates unsupervised GAN schemes with the ability to manage temporal dynamics through supervised autoregressive models, successfully generating large-scale synthetic mobile Internet traffic data. Our experimental results illustrate the superior performance of 5GT-GAN in terms of mean squared error (MSE) and mean absolute error (MAE) compared to traditional models. The use of "Train Synthetic Test Real" (TSTR) and "Train Real Test Synthetic" (TRTS) methodologies affirmed the model's effectiveness with (0.0023 MAE, 0.0074 MSE) and (0.0045 MAE, 0.0092 MSE) respectively. Moreover, the model's runtime complexity of O(n log n) emphasized its efficiency in handling larger datasets, an edge over traditional models. The study also identifies potential future work in augmenting data for traffic prediction and integrating self-attention mechanisms to enhance the capabilities of the model further.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3328170</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0205-0514</orcidid><orcidid>https://orcid.org/0000-0002-8918-1703</orcidid><orcidid>https://orcid.org/0000-0001-8921-8353</orcidid><orcidid>https://orcid.org/0000-0003-0637-5666</orcidid><orcidid>https://orcid.org/0000-0002-7031-1619</orcidid><orcidid>https://orcid.org/0000-0001-9731-2534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.120983-120996
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10298233
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 5G mobile communication
5GT-GAN
Artificial intelligence
Autoregressive models
Cities
Data augmentation
Data models
Data privacy
Edge computing
Generative adversarial networks
Internet
Internet of Things
Internet of Things (IoT)
Mobile computing
multi-access edge computing (MEC)
Smart cities
smart city
Synthetic data
System effectiveness
title 5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5GT-GAN:%20Enhancing%20Data%20Augmentation%20for%205G-Enabled%20Mobile%20Edge%20Computing%20in%20Smart%20Cities&rft.jtitle=IEEE%20access&rft.au=Pandey,%20Chandrasen&rft.date=2023&rft.volume=11&rft.spage=120983&rft.epage=120996&rft.pages=120983-120996&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3328170&rft_dat=%3Cproquest_ieee_%3E2887113811%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887113811&rft_id=info:pmid/&rft_ieee_id=10298233&rft_doaj_id=oai_doaj_org_article_df1b3f260362408f9e71b0625a80829a&rfr_iscdi=true