5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities
This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.120983-120996 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120996 |
---|---|
container_issue | |
container_start_page | 120983 |
container_title | IEEE access |
container_volume | 11 |
creator | Pandey, Chandrasen Tiwari, Vaibhav Imoize, Agbotiname Lucky Li, Chun-Ta Lee, Cheng-Chi Roy, Diptendu Sinha |
description | This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic data becomes a crucial aspect for effectively deploying AI-driven systems in real-world scenarios. 5GT-GAN integrates unsupervised GAN schemes with the ability to manage temporal dynamics through supervised autoregressive models, successfully generating large-scale synthetic mobile Internet traffic data. Our experimental results illustrate the superior performance of 5GT-GAN in terms of mean squared error (MSE) and mean absolute error (MAE) compared to traditional models. The use of "Train Synthetic Test Real" (TSTR) and "Train Real Test Synthetic" (TRTS) methodologies affirmed the model's effectiveness with (0.0023 MAE, 0.0074 MSE) and (0.0045 MAE, 0.0092 MSE) respectively. Moreover, the model's runtime complexity of O(n log n) emphasized its efficiency in handling larger datasets, an edge over traditional models. The study also identifies potential future work in augmenting data for traffic prediction and integrating self-attention mechanisms to enhance the capabilities of the model further. |
doi_str_mv | 10.1109/ACCESS.2023.3328170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10298233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10298233</ieee_id><doaj_id>oai_doaj_org_article_df1b3f260362408f9e71b0625a80829a</doaj_id><sourcerecordid>2887113811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-fbf82ffe3c5b344617b1ffaf7916fbd3b1704c4ef91ef0d2614eaf41491ee0ea3</originalsourceid><addsrcrecordid>eNpNUU1v2zAMFYoVaJH1F2wHATs7lUR_yLsFnpcV6NZD2kNPgmSTmYLEyvxx6L-fUgdFCBAUCb6nRzzGvkixlFKU96uqqjebpRIKlgBKy0JcsVsl8zKBDPJPF-8bdjcMOxFDx1FW3LLXbP2crFd_vvO6-2u7xndb_sOOlq-m7QG70Y4-dJxCz7N1UnfW7bHlv4Pze-R1u0VehcNxGk8w3_HNwfYjr_zocfjMrsnuB7w71wV7-Vk_V7-Sx6f1Q7V6TBrIyjEhR1oRITSZgzTNZeEkkaWilDm5Flw8J21SpFIiiVblMkVLqUxjjwItLNjDzNsGuzPH3kcNbyZYb94Hod-aKMo3ezQtSQekcgG5SoWmEgvpRK4yq4VW5Ynr28x17MO_CYfR7MLUd1G-UVoXUoKOuWAwbzV9GIYe6eNXKczJEjNbYk6WmLMlEfV1RnlEvECoUisA-A-rroVq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887113811</pqid></control><display><type>article</type><title>5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pandey, Chandrasen ; Tiwari, Vaibhav ; Imoize, Agbotiname Lucky ; Li, Chun-Ta ; Lee, Cheng-Chi ; Roy, Diptendu Sinha</creator><creatorcontrib>Pandey, Chandrasen ; Tiwari, Vaibhav ; Imoize, Agbotiname Lucky ; Li, Chun-Ta ; Lee, Cheng-Chi ; Roy, Diptendu Sinha</creatorcontrib><description>This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic data becomes a crucial aspect for effectively deploying AI-driven systems in real-world scenarios. 5GT-GAN integrates unsupervised GAN schemes with the ability to manage temporal dynamics through supervised autoregressive models, successfully generating large-scale synthetic mobile Internet traffic data. Our experimental results illustrate the superior performance of 5GT-GAN in terms of mean squared error (MSE) and mean absolute error (MAE) compared to traditional models. The use of "Train Synthetic Test Real" (TSTR) and "Train Real Test Synthetic" (TRTS) methodologies affirmed the model's effectiveness with (0.0023 MAE, 0.0074 MSE) and (0.0045 MAE, 0.0092 MSE) respectively. Moreover, the model's runtime complexity of O(n log n) emphasized its efficiency in handling larger datasets, an edge over traditional models. The study also identifies potential future work in augmenting data for traffic prediction and integrating self-attention mechanisms to enhance the capabilities of the model further.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3328170</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5GT-GAN ; Artificial intelligence ; Autoregressive models ; Cities ; Data augmentation ; Data models ; Data privacy ; Edge computing ; Generative adversarial networks ; Internet ; Internet of Things ; Internet of Things (IoT) ; Mobile computing ; multi-access edge computing (MEC) ; Smart cities ; smart city ; Synthetic data ; System effectiveness</subject><ispartof>IEEE access, 2023, Vol.11, p.120983-120996</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-fbf82ffe3c5b344617b1ffaf7916fbd3b1704c4ef91ef0d2614eaf41491ee0ea3</cites><orcidid>0000-0003-0205-0514 ; 0000-0002-8918-1703 ; 0000-0001-8921-8353 ; 0000-0003-0637-5666 ; 0000-0002-7031-1619 ; 0000-0001-9731-2534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10298233$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27616,27906,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Pandey, Chandrasen</creatorcontrib><creatorcontrib>Tiwari, Vaibhav</creatorcontrib><creatorcontrib>Imoize, Agbotiname Lucky</creatorcontrib><creatorcontrib>Li, Chun-Ta</creatorcontrib><creatorcontrib>Lee, Cheng-Chi</creatorcontrib><creatorcontrib>Roy, Diptendu Sinha</creatorcontrib><title>5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic data becomes a crucial aspect for effectively deploying AI-driven systems in real-world scenarios. 5GT-GAN integrates unsupervised GAN schemes with the ability to manage temporal dynamics through supervised autoregressive models, successfully generating large-scale synthetic mobile Internet traffic data. Our experimental results illustrate the superior performance of 5GT-GAN in terms of mean squared error (MSE) and mean absolute error (MAE) compared to traditional models. The use of "Train Synthetic Test Real" (TSTR) and "Train Real Test Synthetic" (TRTS) methodologies affirmed the model's effectiveness with (0.0023 MAE, 0.0074 MSE) and (0.0045 MAE, 0.0092 MSE) respectively. Moreover, the model's runtime complexity of O(n log n) emphasized its efficiency in handling larger datasets, an edge over traditional models. The study also identifies potential future work in augmenting data for traffic prediction and integrating self-attention mechanisms to enhance the capabilities of the model further.</description><subject>5G mobile communication</subject><subject>5GT-GAN</subject><subject>Artificial intelligence</subject><subject>Autoregressive models</subject><subject>Cities</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Edge computing</subject><subject>Generative adversarial networks</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Mobile computing</subject><subject>multi-access edge computing (MEC)</subject><subject>Smart cities</subject><subject>smart city</subject><subject>Synthetic data</subject><subject>System effectiveness</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMFYoVaJH1F2wHATs7lUR_yLsFnpcV6NZD2kNPgmSTmYLEyvxx6L-fUgdFCBAUCb6nRzzGvkixlFKU96uqqjebpRIKlgBKy0JcsVsl8zKBDPJPF-8bdjcMOxFDx1FW3LLXbP2crFd_vvO6-2u7xndb_sOOlq-m7QG70Y4-dJxCz7N1UnfW7bHlv4Pze-R1u0VehcNxGk8w3_HNwfYjr_zocfjMrsnuB7w71wV7-Vk_V7-Sx6f1Q7V6TBrIyjEhR1oRITSZgzTNZeEkkaWilDm5Flw8J21SpFIiiVblMkVLqUxjjwItLNjDzNsGuzPH3kcNbyZYb94Hod-aKMo3ezQtSQekcgG5SoWmEgvpRK4yq4VW5Ynr28x17MO_CYfR7MLUd1G-UVoXUoKOuWAwbzV9GIYe6eNXKczJEjNbYk6WmLMlEfV1RnlEvECoUisA-A-rroVq</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pandey, Chandrasen</creator><creator>Tiwari, Vaibhav</creator><creator>Imoize, Agbotiname Lucky</creator><creator>Li, Chun-Ta</creator><creator>Lee, Cheng-Chi</creator><creator>Roy, Diptendu Sinha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0205-0514</orcidid><orcidid>https://orcid.org/0000-0002-8918-1703</orcidid><orcidid>https://orcid.org/0000-0001-8921-8353</orcidid><orcidid>https://orcid.org/0000-0003-0637-5666</orcidid><orcidid>https://orcid.org/0000-0002-7031-1619</orcidid><orcidid>https://orcid.org/0000-0001-9731-2534</orcidid></search><sort><creationdate>2023</creationdate><title>5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities</title><author>Pandey, Chandrasen ; Tiwari, Vaibhav ; Imoize, Agbotiname Lucky ; Li, Chun-Ta ; Lee, Cheng-Chi ; Roy, Diptendu Sinha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-fbf82ffe3c5b344617b1ffaf7916fbd3b1704c4ef91ef0d2614eaf41491ee0ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>5GT-GAN</topic><topic>Artificial intelligence</topic><topic>Autoregressive models</topic><topic>Cities</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Edge computing</topic><topic>Generative adversarial networks</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Mobile computing</topic><topic>multi-access edge computing (MEC)</topic><topic>Smart cities</topic><topic>smart city</topic><topic>Synthetic data</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Chandrasen</creatorcontrib><creatorcontrib>Tiwari, Vaibhav</creatorcontrib><creatorcontrib>Imoize, Agbotiname Lucky</creatorcontrib><creatorcontrib>Li, Chun-Ta</creatorcontrib><creatorcontrib>Lee, Cheng-Chi</creatorcontrib><creatorcontrib>Roy, Diptendu Sinha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Chandrasen</au><au>Tiwari, Vaibhav</au><au>Imoize, Agbotiname Lucky</au><au>Li, Chun-Ta</au><au>Lee, Cheng-Chi</au><au>Roy, Diptendu Sinha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>120983</spage><epage>120996</epage><pages>120983-120996</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper introduces 5GT-GAN, a novel approach leveraging generative adversarial networks (GANs) to create synthetic mobile Internet traffic data, particularly tailored to smart city applications. Given the challenges of data scarcity and privacy concerns in the context of 5G, generating synthetic data becomes a crucial aspect for effectively deploying AI-driven systems in real-world scenarios. 5GT-GAN integrates unsupervised GAN schemes with the ability to manage temporal dynamics through supervised autoregressive models, successfully generating large-scale synthetic mobile Internet traffic data. Our experimental results illustrate the superior performance of 5GT-GAN in terms of mean squared error (MSE) and mean absolute error (MAE) compared to traditional models. The use of "Train Synthetic Test Real" (TSTR) and "Train Real Test Synthetic" (TRTS) methodologies affirmed the model's effectiveness with (0.0023 MAE, 0.0074 MSE) and (0.0045 MAE, 0.0092 MSE) respectively. Moreover, the model's runtime complexity of O(n log n) emphasized its efficiency in handling larger datasets, an edge over traditional models. The study also identifies potential future work in augmenting data for traffic prediction and integrating self-attention mechanisms to enhance the capabilities of the model further.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3328170</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0205-0514</orcidid><orcidid>https://orcid.org/0000-0002-8918-1703</orcidid><orcidid>https://orcid.org/0000-0001-8921-8353</orcidid><orcidid>https://orcid.org/0000-0003-0637-5666</orcidid><orcidid>https://orcid.org/0000-0002-7031-1619</orcidid><orcidid>https://orcid.org/0000-0001-9731-2534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.120983-120996 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10298233 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 5G mobile communication 5GT-GAN Artificial intelligence Autoregressive models Cities Data augmentation Data models Data privacy Edge computing Generative adversarial networks Internet Internet of Things Internet of Things (IoT) Mobile computing multi-access edge computing (MEC) Smart cities smart city Synthetic data System effectiveness |
title | 5GT-GAN: Enhancing Data Augmentation for 5G-Enabled Mobile Edge Computing in Smart Cities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5GT-GAN:%20Enhancing%20Data%20Augmentation%20for%205G-Enabled%20Mobile%20Edge%20Computing%20in%20Smart%20Cities&rft.jtitle=IEEE%20access&rft.au=Pandey,%20Chandrasen&rft.date=2023&rft.volume=11&rft.spage=120983&rft.epage=120996&rft.pages=120983-120996&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3328170&rft_dat=%3Cproquest_ieee_%3E2887113811%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887113811&rft_id=info:pmid/&rft_ieee_id=10298233&rft_doaj_id=oai_doaj_org_article_df1b3f260362408f9e71b0625a80829a&rfr_iscdi=true |