Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching
We briefly describe a set of algorithms to detect and visualize effects of disease and genetic factors on the brain. Extreme variations in cortical anatomy, even among normal subjects, complicate the detection and mapping of systematic effects on brain structure in human populations. We tackle this...
Gespeichert in:
Veröffentlicht in: | Proceedings (International Symposium on Biomedical Imaging) 2002, Vol.2002, p.473-476 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | |
container_start_page | 473 |
container_title | Proceedings (International Symposium on Biomedical Imaging) |
container_volume | 2002 |
creator | Thompson, P.M. Hayashi, K.M. de Zubicaray, G. Janke, A.L. Rose, S.E. Semple, J. Doddrell, D.M. Cannon, T.D. Toga, A.W. |
description | We briefly describe a set of algorithms to detect and visualize effects of disease and genetic factors on the brain. Extreme variations in cortical anatomy, even among normal subjects, complicate the detection and mapping of systematic effects on brain structure in human populations. We tackle this problem in two stages. First, we develop a cortical pattern matching approach, based on metrically covariant partial differential equations (PDEs), to associate corresponding regions of cortex in an MRI brain image database (N=102 scans). Second, these high-dimensional deformation maps are used to transfer within-subject cortical signals, including measures of gray matter distribution, shape asymmetries, and degenerative rates, to a common anatomic template for statistical analysis. We illustrate these techniques in two applications: (1) mapping dynamic patterns of gray matter loss in longitudinally scanned Alzheimer's disease patients; and (2) mapping genetic influences on brain structure. We extend statistics used widely in behavioral genetics to cortical manifolds. Specifically, we introduce methods based on h-squared distributed random fields to map hereditary influences on brain structure in human populations. |
doi_str_mv | 10.1109/ISBI.2002.1029297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_1029297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1029297</ieee_id><sourcerecordid>1835528350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b52585e08518b6a918146b76b0cf05500b78092f4530482378a1baaa2526131b3</originalsourceid><addsrcrecordid>eNpVUU1rHDEMNWlDkyb5ASFQfMxltv4c25dCmqbpQiCHJNDbYHs1uy4znq3tKeTf12W3aaODJHhP7yEJoXNKFpQS83H58Hm5YISwBSXMMKMO0DE1QjZaSPYGvSdKE66kFt_f7gFlmD5CZzn_IDW44a0U79ARNUoazdkxCl-ggC8hrvHqOdoxeGzjCq8hQqk99H1FM54idsmGiHNJsy9zAjznP0ObsN40qzBCzGGKdsB-SnWwNltbCqSIR1v8plJP0WFvhwxn-3qCnr7ePF5_a-7ub5fXV3eN50qVxkkmtQSiJdWutYZqKlqnWkd8T6QkxNUlDeuF5ERoxpW21FlrmWQt5dTxE_Rpp7ud3QgrD7EkO3TbFEabnrvJhu41EsOmW0-_OqaEIMpUgcu9QJp-zpBLN4bsYRhshGnOHdVcSlYTqdQP_3u9mPy9byVc7AgBAP7Bu-_x36hzipE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835528350</pqid></control><display><type>article</type><title>Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Thompson, P.M. ; Hayashi, K.M. ; de Zubicaray, G. ; Janke, A.L. ; Rose, S.E. ; Semple, J. ; Doddrell, D.M. ; Cannon, T.D. ; Toga, A.W.</creator><creatorcontrib>Thompson, P.M. ; Hayashi, K.M. ; de Zubicaray, G. ; Janke, A.L. ; Rose, S.E. ; Semple, J. ; Doddrell, D.M. ; Cannon, T.D. ; Toga, A.W.</creatorcontrib><description>We briefly describe a set of algorithms to detect and visualize effects of disease and genetic factors on the brain. Extreme variations in cortical anatomy, even among normal subjects, complicate the detection and mapping of systematic effects on brain structure in human populations. We tackle this problem in two stages. First, we develop a cortical pattern matching approach, based on metrically covariant partial differential equations (PDEs), to associate corresponding regions of cortex in an MRI brain image database (N=102 scans). Second, these high-dimensional deformation maps are used to transfer within-subject cortical signals, including measures of gray matter distribution, shape asymmetries, and degenerative rates, to a common anatomic template for statistical analysis. We illustrate these techniques in two applications: (1) mapping dynamic patterns of gray matter loss in longitudinally scanned Alzheimer's disease patients; and (2) mapping genetic influences on brain structure. We extend statistics used widely in behavioral genetics to cortical manifolds. Specifically, we introduce methods based on h-squared distributed random fields to map hereditary influences on brain structure in human populations.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 078037584X</identifier><identifier>ISBN: 9780780375840</identifier><identifier>EISSN: 1945-8452</identifier><identifier>DOI: 10.1109/ISBI.2002.1029297</identifier><identifier>PMID: 19759832</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anatomy ; Brain ; Diseases ; Genetics ; Humans ; Magnetic resonance imaging ; Partial differential equations ; Pattern matching ; Shape measurement ; Visualization</subject><ispartof>Proceedings (International Symposium on Biomedical Imaging), 2002, Vol.2002, p.473-476</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b52585e08518b6a918146b76b0cf05500b78092f4530482378a1baaa2526131b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1029297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1029297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19759832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, P.M.</creatorcontrib><creatorcontrib>Hayashi, K.M.</creatorcontrib><creatorcontrib>de Zubicaray, G.</creatorcontrib><creatorcontrib>Janke, A.L.</creatorcontrib><creatorcontrib>Rose, S.E.</creatorcontrib><creatorcontrib>Semple, J.</creatorcontrib><creatorcontrib>Doddrell, D.M.</creatorcontrib><creatorcontrib>Cannon, T.D.</creatorcontrib><creatorcontrib>Toga, A.W.</creatorcontrib><title>Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching</title><title>Proceedings (International Symposium on Biomedical Imaging)</title><addtitle>ISBI</addtitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><description>We briefly describe a set of algorithms to detect and visualize effects of disease and genetic factors on the brain. Extreme variations in cortical anatomy, even among normal subjects, complicate the detection and mapping of systematic effects on brain structure in human populations. We tackle this problem in two stages. First, we develop a cortical pattern matching approach, based on metrically covariant partial differential equations (PDEs), to associate corresponding regions of cortex in an MRI brain image database (N=102 scans). Second, these high-dimensional deformation maps are used to transfer within-subject cortical signals, including measures of gray matter distribution, shape asymmetries, and degenerative rates, to a common anatomic template for statistical analysis. We illustrate these techniques in two applications: (1) mapping dynamic patterns of gray matter loss in longitudinally scanned Alzheimer's disease patients; and (2) mapping genetic influences on brain structure. We extend statistics used widely in behavioral genetics to cortical manifolds. Specifically, we introduce methods based on h-squared distributed random fields to map hereditary influences on brain structure in human populations.</description><subject>Anatomy</subject><subject>Brain</subject><subject>Diseases</subject><subject>Genetics</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Partial differential equations</subject><subject>Pattern matching</subject><subject>Shape measurement</subject><subject>Visualization</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>078037584X</isbn><isbn>9780780375840</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUU1rHDEMNWlDkyb5ASFQfMxltv4c25dCmqbpQiCHJNDbYHs1uy4znq3tKeTf12W3aaODJHhP7yEJoXNKFpQS83H58Hm5YISwBSXMMKMO0DE1QjZaSPYGvSdKE66kFt_f7gFlmD5CZzn_IDW44a0U79ARNUoazdkxCl-ggC8hrvHqOdoxeGzjCq8hQqk99H1FM54idsmGiHNJsy9zAjznP0ObsN40qzBCzGGKdsB-SnWwNltbCqSIR1v8plJP0WFvhwxn-3qCnr7ePF5_a-7ub5fXV3eN50qVxkkmtQSiJdWutYZqKlqnWkd8T6QkxNUlDeuF5ERoxpW21FlrmWQt5dTxE_Rpp7ud3QgrD7EkO3TbFEabnrvJhu41EsOmW0-_OqaEIMpUgcu9QJp-zpBLN4bsYRhshGnOHdVcSlYTqdQP_3u9mPy9byVc7AgBAP7Bu-_x36hzipE</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Thompson, P.M.</creator><creator>Hayashi, K.M.</creator><creator>de Zubicaray, G.</creator><creator>Janke, A.L.</creator><creator>Rose, S.E.</creator><creator>Semple, J.</creator><creator>Doddrell, D.M.</creator><creator>Cannon, T.D.</creator><creator>Toga, A.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2002</creationdate><title>Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching</title><author>Thompson, P.M. ; Hayashi, K.M. ; de Zubicaray, G. ; Janke, A.L. ; Rose, S.E. ; Semple, J. ; Doddrell, D.M. ; Cannon, T.D. ; Toga, A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b52585e08518b6a918146b76b0cf05500b78092f4530482378a1baaa2526131b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anatomy</topic><topic>Brain</topic><topic>Diseases</topic><topic>Genetics</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Partial differential equations</topic><topic>Pattern matching</topic><topic>Shape measurement</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Thompson, P.M.</creatorcontrib><creatorcontrib>Hayashi, K.M.</creatorcontrib><creatorcontrib>de Zubicaray, G.</creatorcontrib><creatorcontrib>Janke, A.L.</creatorcontrib><creatorcontrib>Rose, S.E.</creatorcontrib><creatorcontrib>Semple, J.</creatorcontrib><creatorcontrib>Doddrell, D.M.</creatorcontrib><creatorcontrib>Cannon, T.D.</creatorcontrib><creatorcontrib>Toga, A.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings (International Symposium on Biomedical Imaging)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thompson, P.M.</au><au>Hayashi, K.M.</au><au>de Zubicaray, G.</au><au>Janke, A.L.</au><au>Rose, S.E.</au><au>Semple, J.</au><au>Doddrell, D.M.</au><au>Cannon, T.D.</au><au>Toga, A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching</atitle><jtitle>Proceedings (International Symposium on Biomedical Imaging)</jtitle><stitle>ISBI</stitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><date>2002</date><risdate>2002</risdate><volume>2002</volume><spage>473</spage><epage>476</epage><pages>473-476</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>078037584X</isbn><isbn>9780780375840</isbn><abstract>We briefly describe a set of algorithms to detect and visualize effects of disease and genetic factors on the brain. Extreme variations in cortical anatomy, even among normal subjects, complicate the detection and mapping of systematic effects on brain structure in human populations. We tackle this problem in two stages. First, we develop a cortical pattern matching approach, based on metrically covariant partial differential equations (PDEs), to associate corresponding regions of cortex in an MRI brain image database (N=102 scans). Second, these high-dimensional deformation maps are used to transfer within-subject cortical signals, including measures of gray matter distribution, shape asymmetries, and degenerative rates, to a common anatomic template for statistical analysis. We illustrate these techniques in two applications: (1) mapping dynamic patterns of gray matter loss in longitudinally scanned Alzheimer's disease patients; and (2) mapping genetic influences on brain structure. We extend statistics used widely in behavioral genetics to cortical manifolds. Specifically, we introduce methods based on h-squared distributed random fields to map hereditary influences on brain structure in human populations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19759832</pmid><doi>10.1109/ISBI.2002.1029297</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | Proceedings (International Symposium on Biomedical Imaging), 2002, Vol.2002, p.473-476 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_1029297 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Anatomy Brain Diseases Genetics Humans Magnetic resonance imaging Partial differential equations Pattern matching Shape measurement Visualization |
title | Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20dynamic%20and%20genetic%20effects%20on%20brain%20structure%20using%20high-dimensional%20cortical%20pattern%20matching&rft.jtitle=Proceedings%20(International%20Symposium%20on%20Biomedical%20Imaging)&rft.au=Thompson,%20P.M.&rft.date=2002&rft.volume=2002&rft.spage=473&rft.epage=476&rft.pages=473-476&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=078037584X&rft.isbn_list=9780780375840&rft_id=info:doi/10.1109/ISBI.2002.1029297&rft_dat=%3Cproquest_6IE%3E1835528350%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835528350&rft_id=info:pmid/19759832&rft_ieee_id=1029297&rfr_iscdi=true |