A Mapping Approach for Eucalyptus Plantations Canopy and Single Tree Using High-Resolution Satellite Images in Liuzhou, China

Accurate canopy and single-tree mapping is important to obtain information on the ecological structure and biogeophysical parameters for forests. Although some airborne radars can retrieve canopy and single-tree information within a smaller area, the optical satellite imagery-based approaches for ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-13
Hauptverfasser: Zhang, Sen, Cui, Yaoping, Zhou, Yan, Dong, Junwu, Li, Wanlong, Liu, Bailu, Dong, Jinwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Zhang, Sen
Cui, Yaoping
Zhou, Yan
Dong, Junwu
Li, Wanlong
Liu, Bailu
Dong, Jinwei
description Accurate canopy and single-tree mapping is important to obtain information on the ecological structure and biogeophysical parameters for forests. Although some airborne radars can retrieve canopy and single-tree information within a smaller area, the optical satellite imagery-based approaches for rapidly and accurately mapping them over a large region are still limited. In this study, based on Eucalyptus canopy and single-tree texture and spectral features, we proposed a mapping approach using the combinations of image morphology, the Otsu method, and an adaptive iterative erosion algorithm (EUMAP). Then, we applied the commonly used red/green/blue bands from the high-resolution satellite images, which are freely available, to map the canopy and single tree in Eucalyptus plantations in southern China. EUMAP consists of two steps: 1) Eucalyptus canopy identification for various canopy density regions and 2) adaptive iterative erosion to separate single tree. Our study was conducted in Chengzhong and Liubei, Liuzhou, China. The accuracy evaluation was carried out in the state-owned Sanmenjiang forest farm. The results showed that the average {F}1 score for mapping canopy and single tree reached 88.34% and 86.40%, respectively. For the whole study area, there were 7033021 Eucalyptus trees and the average density was 819 trees per hectare. The approach adopted in this study, combining the prior knowledge about image morphology and single-tree texture features of Eucalyptus plantations, was highly efficient for satellite image processing and had excellent applicability to large-scale Eucalyptus plantation mapping. Our study highlights the necessity of prior knowledge for forest mapping using satellite images without requiring a training sample and provides a universal approach of accurate large-scale mapping for specific forest species with common red/green/blue images.
doi_str_mv 10.1109/TGRS.2023.3327128
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10292905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10292905</ieee_id><sourcerecordid>2890103970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f81260ed5da23db218f90a4c9b572a64c9588bdd7b266d2e0e2bdf1ddacb049c3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLElxZ48vayq0lYqAvWxtpzYaVyldrCTRZH4dxKVBauZxbl3NAehR0omlBL2ultsthMgEE7CEFIK2RUa0TjOApJE0TUaEcqSADIGt-jO-yMhNIppOkI_U_wumkabA542jbOiqHBpHZ53hajPTdt5_FkL04pWW-PxTBjbnLEwEm_7TK3wzimF934oWOpDFWyUt3U30HgrWlXXulV4dRIH5bE2eK2778p2L3hWaSPu0U0paq8e_uYY7d_mu9kyWH8sVrPpOiiARW1QZhQSomQsBYQyB5qVjIioYHmcgkj6Jc6yXMo0hySRoIiCXJZUSlHkJGJFOEbPl97-w69O-ZYfbedMf5L3TgglIUtJT9ELVTjrvVMlb5w-CXfmlPDBMh8s88Ey_7PcZ54uGa2U-scDA0bi8BfH33pu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890103970</pqid></control><display><type>article</type><title>A Mapping Approach for Eucalyptus Plantations Canopy and Single Tree Using High-Resolution Satellite Images in Liuzhou, China</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Sen ; Cui, Yaoping ; Zhou, Yan ; Dong, Junwu ; Li, Wanlong ; Liu, Bailu ; Dong, Jinwei</creator><creatorcontrib>Zhang, Sen ; Cui, Yaoping ; Zhou, Yan ; Dong, Junwu ; Li, Wanlong ; Liu, Bailu ; Dong, Jinwei</creatorcontrib><description>Accurate canopy and single-tree mapping is important to obtain information on the ecological structure and biogeophysical parameters for forests. Although some airborne radars can retrieve canopy and single-tree information within a smaller area, the optical satellite imagery-based approaches for rapidly and accurately mapping them over a large region are still limited. In this study, based on Eucalyptus canopy and single-tree texture and spectral features, we proposed a mapping approach using the combinations of image morphology, the Otsu method, and an adaptive iterative erosion algorithm (EUMAP). Then, we applied the commonly used red/green/blue bands from the high-resolution satellite images, which are freely available, to map the canopy and single tree in Eucalyptus plantations in southern China. EUMAP consists of two steps: 1) Eucalyptus canopy identification for various canopy density regions and 2) adaptive iterative erosion to separate single tree. Our study was conducted in Chengzhong and Liubei, Liuzhou, China. The accuracy evaluation was carried out in the state-owned Sanmenjiang forest farm. The results showed that the average &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt; score for mapping canopy and single tree reached 88.34% and 86.40%, respectively. For the whole study area, there were 7033021 Eucalyptus trees and the average density was 819 trees per hectare. The approach adopted in this study, combining the prior knowledge about image morphology and single-tree texture features of Eucalyptus plantations, was highly efficient for satellite image processing and had excellent applicability to large-scale Eucalyptus plantation mapping. Our study highlights the necessity of prior knowledge for forest mapping using satellite images without requiring a training sample and provides a universal approach of accurate large-scale mapping for specific forest species with common red/green/blue images.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3327128</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive iterative erosion ; Agriculture ; Canopies ; Canopy ; Density ; Erosion ; Eucalyptus ; Eucalyptus plantations ; Farming ; Feature extraction ; Forestry ; Forests ; High resolution ; high-resolution satellite image ; image morphology ; Image processing ; Image resolution ; Iterative methods ; Mapping ; Morphology ; Plant cover ; Plantations ; Satellite imagery ; Satellite images ; single-tree mapping ; Surveys ; Texture ; Trees ; Vegetation</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-f81260ed5da23db218f90a4c9b572a64c9588bdd7b266d2e0e2bdf1ddacb049c3</citedby><cites>FETCH-LOGICAL-c294t-f81260ed5da23db218f90a4c9b572a64c9588bdd7b266d2e0e2bdf1ddacb049c3</cites><orcidid>0000-0003-4030-4976 ; 0000-0003-2918-3480 ; 0000-0002-7416-9234 ; 0000-0003-4226-5042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10292905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10292905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>Cui, Yaoping</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Dong, Junwu</creatorcontrib><creatorcontrib>Li, Wanlong</creatorcontrib><creatorcontrib>Liu, Bailu</creatorcontrib><creatorcontrib>Dong, Jinwei</creatorcontrib><title>A Mapping Approach for Eucalyptus Plantations Canopy and Single Tree Using High-Resolution Satellite Images in Liuzhou, China</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Accurate canopy and single-tree mapping is important to obtain information on the ecological structure and biogeophysical parameters for forests. Although some airborne radars can retrieve canopy and single-tree information within a smaller area, the optical satellite imagery-based approaches for rapidly and accurately mapping them over a large region are still limited. In this study, based on Eucalyptus canopy and single-tree texture and spectral features, we proposed a mapping approach using the combinations of image morphology, the Otsu method, and an adaptive iterative erosion algorithm (EUMAP). Then, we applied the commonly used red/green/blue bands from the high-resolution satellite images, which are freely available, to map the canopy and single tree in Eucalyptus plantations in southern China. EUMAP consists of two steps: 1) Eucalyptus canopy identification for various canopy density regions and 2) adaptive iterative erosion to separate single tree. Our study was conducted in Chengzhong and Liubei, Liuzhou, China. The accuracy evaluation was carried out in the state-owned Sanmenjiang forest farm. The results showed that the average &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt; score for mapping canopy and single tree reached 88.34% and 86.40%, respectively. For the whole study area, there were 7033021 Eucalyptus trees and the average density was 819 trees per hectare. The approach adopted in this study, combining the prior knowledge about image morphology and single-tree texture features of Eucalyptus plantations, was highly efficient for satellite image processing and had excellent applicability to large-scale Eucalyptus plantation mapping. Our study highlights the necessity of prior knowledge for forest mapping using satellite images without requiring a training sample and provides a universal approach of accurate large-scale mapping for specific forest species with common red/green/blue images.</description><subject>Adaptive algorithms</subject><subject>Adaptive iterative erosion</subject><subject>Agriculture</subject><subject>Canopies</subject><subject>Canopy</subject><subject>Density</subject><subject>Erosion</subject><subject>Eucalyptus</subject><subject>Eucalyptus plantations</subject><subject>Farming</subject><subject>Feature extraction</subject><subject>Forestry</subject><subject>Forests</subject><subject>High resolution</subject><subject>high-resolution satellite image</subject><subject>image morphology</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Iterative methods</subject><subject>Mapping</subject><subject>Morphology</subject><subject>Plant cover</subject><subject>Plantations</subject><subject>Satellite imagery</subject><subject>Satellite images</subject><subject>single-tree mapping</subject><subject>Surveys</subject><subject>Texture</subject><subject>Trees</subject><subject>Vegetation</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLElxZ48vayq0lYqAvWxtpzYaVyldrCTRZH4dxKVBauZxbl3NAehR0omlBL2ultsthMgEE7CEFIK2RUa0TjOApJE0TUaEcqSADIGt-jO-yMhNIppOkI_U_wumkabA542jbOiqHBpHZ53hajPTdt5_FkL04pWW-PxTBjbnLEwEm_7TK3wzimF934oWOpDFWyUt3U30HgrWlXXulV4dRIH5bE2eK2778p2L3hWaSPu0U0paq8e_uYY7d_mu9kyWH8sVrPpOiiARW1QZhQSomQsBYQyB5qVjIioYHmcgkj6Jc6yXMo0hySRoIiCXJZUSlHkJGJFOEbPl97-w69O-ZYfbedMf5L3TgglIUtJT9ELVTjrvVMlb5w-CXfmlPDBMh8s88Ey_7PcZ54uGa2U-scDA0bi8BfH33pu</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Sen</creator><creator>Cui, Yaoping</creator><creator>Zhou, Yan</creator><creator>Dong, Junwu</creator><creator>Li, Wanlong</creator><creator>Liu, Bailu</creator><creator>Dong, Jinwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4030-4976</orcidid><orcidid>https://orcid.org/0000-0003-2918-3480</orcidid><orcidid>https://orcid.org/0000-0002-7416-9234</orcidid><orcidid>https://orcid.org/0000-0003-4226-5042</orcidid></search><sort><creationdate>2023</creationdate><title>A Mapping Approach for Eucalyptus Plantations Canopy and Single Tree Using High-Resolution Satellite Images in Liuzhou, China</title><author>Zhang, Sen ; Cui, Yaoping ; Zhou, Yan ; Dong, Junwu ; Li, Wanlong ; Liu, Bailu ; Dong, Jinwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f81260ed5da23db218f90a4c9b572a64c9588bdd7b266d2e0e2bdf1ddacb049c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive iterative erosion</topic><topic>Agriculture</topic><topic>Canopies</topic><topic>Canopy</topic><topic>Density</topic><topic>Erosion</topic><topic>Eucalyptus</topic><topic>Eucalyptus plantations</topic><topic>Farming</topic><topic>Feature extraction</topic><topic>Forestry</topic><topic>Forests</topic><topic>High resolution</topic><topic>high-resolution satellite image</topic><topic>image morphology</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Iterative methods</topic><topic>Mapping</topic><topic>Morphology</topic><topic>Plant cover</topic><topic>Plantations</topic><topic>Satellite imagery</topic><topic>Satellite images</topic><topic>single-tree mapping</topic><topic>Surveys</topic><topic>Texture</topic><topic>Trees</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>Cui, Yaoping</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Dong, Junwu</creatorcontrib><creatorcontrib>Li, Wanlong</creatorcontrib><creatorcontrib>Liu, Bailu</creatorcontrib><creatorcontrib>Dong, Jinwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Sen</au><au>Cui, Yaoping</au><au>Zhou, Yan</au><au>Dong, Junwu</au><au>Li, Wanlong</au><au>Liu, Bailu</au><au>Dong, Jinwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mapping Approach for Eucalyptus Plantations Canopy and Single Tree Using High-Resolution Satellite Images in Liuzhou, China</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Accurate canopy and single-tree mapping is important to obtain information on the ecological structure and biogeophysical parameters for forests. Although some airborne radars can retrieve canopy and single-tree information within a smaller area, the optical satellite imagery-based approaches for rapidly and accurately mapping them over a large region are still limited. In this study, based on Eucalyptus canopy and single-tree texture and spectral features, we proposed a mapping approach using the combinations of image morphology, the Otsu method, and an adaptive iterative erosion algorithm (EUMAP). Then, we applied the commonly used red/green/blue bands from the high-resolution satellite images, which are freely available, to map the canopy and single tree in Eucalyptus plantations in southern China. EUMAP consists of two steps: 1) Eucalyptus canopy identification for various canopy density regions and 2) adaptive iterative erosion to separate single tree. Our study was conducted in Chengzhong and Liubei, Liuzhou, China. The accuracy evaluation was carried out in the state-owned Sanmenjiang forest farm. The results showed that the average &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt; score for mapping canopy and single tree reached 88.34% and 86.40%, respectively. For the whole study area, there were 7033021 Eucalyptus trees and the average density was 819 trees per hectare. The approach adopted in this study, combining the prior knowledge about image morphology and single-tree texture features of Eucalyptus plantations, was highly efficient for satellite image processing and had excellent applicability to large-scale Eucalyptus plantation mapping. Our study highlights the necessity of prior knowledge for forest mapping using satellite images without requiring a training sample and provides a universal approach of accurate large-scale mapping for specific forest species with common red/green/blue images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3327128</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4030-4976</orcidid><orcidid>https://orcid.org/0000-0003-2918-3480</orcidid><orcidid>https://orcid.org/0000-0002-7416-9234</orcidid><orcidid>https://orcid.org/0000-0003-4226-5042</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10292905
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Adaptive iterative erosion
Agriculture
Canopies
Canopy
Density
Erosion
Eucalyptus
Eucalyptus plantations
Farming
Feature extraction
Forestry
Forests
High resolution
high-resolution satellite image
image morphology
Image processing
Image resolution
Iterative methods
Mapping
Morphology
Plant cover
Plantations
Satellite imagery
Satellite images
single-tree mapping
Surveys
Texture
Trees
Vegetation
title A Mapping Approach for Eucalyptus Plantations Canopy and Single Tree Using High-Resolution Satellite Images in Liuzhou, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T12%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mapping%20Approach%20for%20Eucalyptus%20Plantations%20Canopy%20and%20Single%20Tree%20Using%20High-Resolution%20Satellite%20Images%20in%20Liuzhou,%20China&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Sen&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3327128&rft_dat=%3Cproquest_RIE%3E2890103970%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890103970&rft_id=info:pmid/&rft_ieee_id=10292905&rfr_iscdi=true