Thin-Film Photogate Pixel With Fixed Photodiode Bias for Near-Infrared Imaging
This letter presents an organic thin-film photodiode (OPD) based photogate (PG) pixel for near-infrared image sensors with improved linearity and reduced dark current. The proposed image sensor is based on the conventional 3T pixel readout with an additional PG electrode below the photodiode structu...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2023-12, Vol.44 (12), p.2007-2010 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2010 |
---|---|
container_issue | 12 |
container_start_page | 2007 |
container_title | IEEE electron device letters |
container_volume | 44 |
creator | Jin, Minhyun Georgitzikis, Epimitheas Hermans, Yannick Chandrasekaran, Naresh Li, Yunlong Kim, Joo Hyoung Kim, Soo Youn Malinowski, Pawel E. Lee, Jiwon |
description | This letter presents an organic thin-film photodiode (OPD) based photogate (PG) pixel for near-infrared image sensors with improved linearity and reduced dark current. The proposed image sensor is based on the conventional 3T pixel readout with an additional PG electrode below the photodiode structure. By including the PG below the OPD, which is being separated by a thin dielectric layer, the potential bias is kept constant during integration, allowing the photodiode to be biased with low potential. Compared to the conventional capacitive transimpedance amplifier pixel, which uses an in-pixel amplifier to fix the bias of the photodiode, the proposed pixel architecture provides an effective solution for affordable high-resolution, high-performance thin-film image sensors by keeping the simple pixel structure. The proposed image sensor is designed and processed using a 130nm complementary metal-oxide semiconductor process and an OPD process. The proposed pixel structure demonstrated a 72.01 % reduction in dark current while maintaining a 3.56 times higher conversion gain. In addition, the linearity error was reduced by 59.3 %. |
doi_str_mv | 10.1109/LED.2023.3325830 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10287970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287970</ieee_id><sourcerecordid>2895009440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-33319b259223aa2e842a9263a1c970d9c2da45f7f2467fc5f96b05ca9fb3ea6c3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQRi0EEqWwMzBEYnY5--wkHqG0EKkqHYoYLTexW1dtUuxUgn9PqnRgupPufXenR8g9gxFjoJ5mk9cRB44jRC5zhAsyYFLmFGSKl2QAmWAUGaTX5CbGLQATIhMDMl9ufE2nfrdPFpumbdamtcnC_9hd8uXbTTLt2qofVb6pbPLiTUxcE5K5NYEWtQsmdESxN2tfr2_JlTO7aO_OdUg-p5Pl-J3OPt6K8fOMllzIliIiUysuFedoDLe54EbxFA0rVQaVKnllhHSZ4yLNXCmdSlcgS6PcCq1JSxySx37vITTfRxtbvW2Ooe5Oap4rCaCEgI6CnipDE2OwTh-C35vwqxnokzXdWdMna_psrYs89BFvrf2H8zzrPsM_T1lm_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895009440</pqid></control><display><type>article</type><title>Thin-Film Photogate Pixel With Fixed Photodiode Bias for Near-Infrared Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Minhyun ; Georgitzikis, Epimitheas ; Hermans, Yannick ; Chandrasekaran, Naresh ; Li, Yunlong ; Kim, Joo Hyoung ; Kim, Soo Youn ; Malinowski, Pawel E. ; Lee, Jiwon</creator><creatorcontrib>Jin, Minhyun ; Georgitzikis, Epimitheas ; Hermans, Yannick ; Chandrasekaran, Naresh ; Li, Yunlong ; Kim, Joo Hyoung ; Kim, Soo Youn ; Malinowski, Pawel E. ; Lee, Jiwon</creatorcontrib><description>This letter presents an organic thin-film photodiode (OPD) based photogate (PG) pixel for near-infrared image sensors with improved linearity and reduced dark current. The proposed image sensor is based on the conventional 3T pixel readout with an additional PG electrode below the photodiode structure. By including the PG below the OPD, which is being separated by a thin dielectric layer, the potential bias is kept constant during integration, allowing the photodiode to be biased with low potential. Compared to the conventional capacitive transimpedance amplifier pixel, which uses an in-pixel amplifier to fix the bias of the photodiode, the proposed pixel architecture provides an effective solution for affordable high-resolution, high-performance thin-film image sensors by keeping the simple pixel structure. The proposed image sensor is designed and processed using a 130nm complementary metal-oxide semiconductor process and an OPD process. The proposed pixel structure demonstrated a 72.01 % reduction in dark current while maintaining a 3.56 times higher conversion gain. In addition, the linearity error was reduced by 59.3 %.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2023.3325830</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplifiers ; Bias ; CMOS ; Dark current ; Electric potential ; Error reduction ; fixed photodiode bias ; high linearity ; Image resolution ; Image sensors ; Infrared detectors ; Infrared imagery ; Infrared imaging ; Linearity ; low dark current ; near-infrared image sensor ; Organic thin-film photodiode ; Photodiodes ; photogate pixel ; Pixels ; Sensors ; Thin films</subject><ispartof>IEEE electron device letters, 2023-12, Vol.44 (12), p.2007-2010</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-33319b259223aa2e842a9263a1c970d9c2da45f7f2467fc5f96b05ca9fb3ea6c3</cites><orcidid>0000-0003-4791-4013 ; 0000-0001-9678-381X ; 0000-0003-1502-5377 ; 0000-0003-3738-4872 ; 0000-0002-2934-470X ; 0000-0001-5972-8328 ; 0000-0002-9295-7920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10287970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Minhyun</creatorcontrib><creatorcontrib>Georgitzikis, Epimitheas</creatorcontrib><creatorcontrib>Hermans, Yannick</creatorcontrib><creatorcontrib>Chandrasekaran, Naresh</creatorcontrib><creatorcontrib>Li, Yunlong</creatorcontrib><creatorcontrib>Kim, Joo Hyoung</creatorcontrib><creatorcontrib>Kim, Soo Youn</creatorcontrib><creatorcontrib>Malinowski, Pawel E.</creatorcontrib><creatorcontrib>Lee, Jiwon</creatorcontrib><title>Thin-Film Photogate Pixel With Fixed Photodiode Bias for Near-Infrared Imaging</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>This letter presents an organic thin-film photodiode (OPD) based photogate (PG) pixel for near-infrared image sensors with improved linearity and reduced dark current. The proposed image sensor is based on the conventional 3T pixel readout with an additional PG electrode below the photodiode structure. By including the PG below the OPD, which is being separated by a thin dielectric layer, the potential bias is kept constant during integration, allowing the photodiode to be biased with low potential. Compared to the conventional capacitive transimpedance amplifier pixel, which uses an in-pixel amplifier to fix the bias of the photodiode, the proposed pixel architecture provides an effective solution for affordable high-resolution, high-performance thin-film image sensors by keeping the simple pixel structure. The proposed image sensor is designed and processed using a 130nm complementary metal-oxide semiconductor process and an OPD process. The proposed pixel structure demonstrated a 72.01 % reduction in dark current while maintaining a 3.56 times higher conversion gain. In addition, the linearity error was reduced by 59.3 %.</description><subject>Amplifiers</subject><subject>Bias</subject><subject>CMOS</subject><subject>Dark current</subject><subject>Electric potential</subject><subject>Error reduction</subject><subject>fixed photodiode bias</subject><subject>high linearity</subject><subject>Image resolution</subject><subject>Image sensors</subject><subject>Infrared detectors</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Linearity</subject><subject>low dark current</subject><subject>near-infrared image sensor</subject><subject>Organic thin-film photodiode</subject><subject>Photodiodes</subject><subject>photogate pixel</subject><subject>Pixels</subject><subject>Sensors</subject><subject>Thin films</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQRi0EEqWwMzBEYnY5--wkHqG0EKkqHYoYLTexW1dtUuxUgn9PqnRgupPufXenR8g9gxFjoJ5mk9cRB44jRC5zhAsyYFLmFGSKl2QAmWAUGaTX5CbGLQATIhMDMl9ufE2nfrdPFpumbdamtcnC_9hd8uXbTTLt2qofVb6pbPLiTUxcE5K5NYEWtQsmdESxN2tfr2_JlTO7aO_OdUg-p5Pl-J3OPt6K8fOMllzIliIiUysuFedoDLe54EbxFA0rVQaVKnllhHSZ4yLNXCmdSlcgS6PcCq1JSxySx37vITTfRxtbvW2Ooe5Oap4rCaCEgI6CnipDE2OwTh-C35vwqxnokzXdWdMna_psrYs89BFvrf2H8zzrPsM_T1lm_Q</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Jin, Minhyun</creator><creator>Georgitzikis, Epimitheas</creator><creator>Hermans, Yannick</creator><creator>Chandrasekaran, Naresh</creator><creator>Li, Yunlong</creator><creator>Kim, Joo Hyoung</creator><creator>Kim, Soo Youn</creator><creator>Malinowski, Pawel E.</creator><creator>Lee, Jiwon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4791-4013</orcidid><orcidid>https://orcid.org/0000-0001-9678-381X</orcidid><orcidid>https://orcid.org/0000-0003-1502-5377</orcidid><orcidid>https://orcid.org/0000-0003-3738-4872</orcidid><orcidid>https://orcid.org/0000-0002-2934-470X</orcidid><orcidid>https://orcid.org/0000-0001-5972-8328</orcidid><orcidid>https://orcid.org/0000-0002-9295-7920</orcidid></search><sort><creationdate>20231201</creationdate><title>Thin-Film Photogate Pixel With Fixed Photodiode Bias for Near-Infrared Imaging</title><author>Jin, Minhyun ; Georgitzikis, Epimitheas ; Hermans, Yannick ; Chandrasekaran, Naresh ; Li, Yunlong ; Kim, Joo Hyoung ; Kim, Soo Youn ; Malinowski, Pawel E. ; Lee, Jiwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-33319b259223aa2e842a9263a1c970d9c2da45f7f2467fc5f96b05ca9fb3ea6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplifiers</topic><topic>Bias</topic><topic>CMOS</topic><topic>Dark current</topic><topic>Electric potential</topic><topic>Error reduction</topic><topic>fixed photodiode bias</topic><topic>high linearity</topic><topic>Image resolution</topic><topic>Image sensors</topic><topic>Infrared detectors</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Linearity</topic><topic>low dark current</topic><topic>near-infrared image sensor</topic><topic>Organic thin-film photodiode</topic><topic>Photodiodes</topic><topic>photogate pixel</topic><topic>Pixels</topic><topic>Sensors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Minhyun</creatorcontrib><creatorcontrib>Georgitzikis, Epimitheas</creatorcontrib><creatorcontrib>Hermans, Yannick</creatorcontrib><creatorcontrib>Chandrasekaran, Naresh</creatorcontrib><creatorcontrib>Li, Yunlong</creatorcontrib><creatorcontrib>Kim, Joo Hyoung</creatorcontrib><creatorcontrib>Kim, Soo Youn</creatorcontrib><creatorcontrib>Malinowski, Pawel E.</creatorcontrib><creatorcontrib>Lee, Jiwon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Minhyun</au><au>Georgitzikis, Epimitheas</au><au>Hermans, Yannick</au><au>Chandrasekaran, Naresh</au><au>Li, Yunlong</au><au>Kim, Joo Hyoung</au><au>Kim, Soo Youn</au><au>Malinowski, Pawel E.</au><au>Lee, Jiwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-Film Photogate Pixel With Fixed Photodiode Bias for Near-Infrared Imaging</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>44</volume><issue>12</issue><spage>2007</spage><epage>2010</epage><pages>2007-2010</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>This letter presents an organic thin-film photodiode (OPD) based photogate (PG) pixel for near-infrared image sensors with improved linearity and reduced dark current. The proposed image sensor is based on the conventional 3T pixel readout with an additional PG electrode below the photodiode structure. By including the PG below the OPD, which is being separated by a thin dielectric layer, the potential bias is kept constant during integration, allowing the photodiode to be biased with low potential. Compared to the conventional capacitive transimpedance amplifier pixel, which uses an in-pixel amplifier to fix the bias of the photodiode, the proposed pixel architecture provides an effective solution for affordable high-resolution, high-performance thin-film image sensors by keeping the simple pixel structure. The proposed image sensor is designed and processed using a 130nm complementary metal-oxide semiconductor process and an OPD process. The proposed pixel structure demonstrated a 72.01 % reduction in dark current while maintaining a 3.56 times higher conversion gain. In addition, the linearity error was reduced by 59.3 %.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2023.3325830</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4791-4013</orcidid><orcidid>https://orcid.org/0000-0001-9678-381X</orcidid><orcidid>https://orcid.org/0000-0003-1502-5377</orcidid><orcidid>https://orcid.org/0000-0003-3738-4872</orcidid><orcidid>https://orcid.org/0000-0002-2934-470X</orcidid><orcidid>https://orcid.org/0000-0001-5972-8328</orcidid><orcidid>https://orcid.org/0000-0002-9295-7920</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2023-12, Vol.44 (12), p.2007-2010 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_10287970 |
source | IEEE Electronic Library (IEL) |
subjects | Amplifiers Bias CMOS Dark current Electric potential Error reduction fixed photodiode bias high linearity Image resolution Image sensors Infrared detectors Infrared imagery Infrared imaging Linearity low dark current near-infrared image sensor Organic thin-film photodiode Photodiodes photogate pixel Pixels Sensors Thin films |
title | Thin-Film Photogate Pixel With Fixed Photodiode Bias for Near-Infrared Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-Film%20Photogate%20Pixel%20With%20Fixed%20Photodiode%20Bias%20for%20Near-Infrared%20Imaging&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Jin,%20Minhyun&rft.date=2023-12-01&rft.volume=44&rft.issue=12&rft.spage=2007&rft.epage=2010&rft.pages=2007-2010&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2023.3325830&rft_dat=%3Cproquest_RIE%3E2895009440%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895009440&rft_id=info:pmid/&rft_ieee_id=10287970&rfr_iscdi=true |