A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices
Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.227-237 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 1 |
container_start_page | 227 |
container_title | IEEE transactions on consumer electronics |
container_volume | 70 |
creator | Yu, Xu Peng, Qinglong Lv, Hongwu Zhan, Dingjia Hu, Qiang Du, Junwei Gong, Dunwei |
description | Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption behavior of other heterogeneous products, so we combine the consumer behavior of other heterogeneous products in the auxiliary domain to improve the recommendation performance of industrial IoT devices in the target domain. Due to privacy-preserving requirements, the original scoring information of the auxiliary domain is often not allowed to be directly shared with the target domain. Therefore, we propose a Privacy-Preserving Cross-Domain Recommendation algorithm for industrial IoT devices. First, the non-privacy preference features are extracted through the auxiliary domain scoring data. Next, the extracted preference features are fused with the target domain information. Extensive experiments have been conducted on the Amazon dataset to verify the effectiveness of our method. |
doi_str_mv | 10.1109/TCE.2023.3324968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10287129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287129</ieee_id><sourcerecordid>3049492859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7d6949a949f3ae136da321b880d1f06d82ad5c43a0bc7fc3625455bbb0f333283</originalsourceid><addsrcrecordid>eNpNkL1vwjAUxK2qlUpp9w4dLHVO-vyVOCMKtEVCKqpgthzHoUYkpnZA4r9vEAwdnm65u6f7IfRMICUEirdVOUspUJYyRnmRyRs0IkLIhBOa36IRQCETBhm7Rw8xbgEIF1SO0HqCl8EdtTkly2CjDUfXbXAZfIzJ1LfadfjbGt-2tqt173yHJ7uND67_aXHjA5539SH2wekdnvsVntqjMzY-ortG76J9uuoYrd9nq_IzWXx9zMvJIjGUiz7J66zghR6uYdoSltWaUVJJCTVpIKsl1bUwnGmoTN4YllHBhaiqCho2zJRsjF4vvfvgfw829mrrD6EbXioGfOilUhSDCy4uc54VbKP2wbU6nBQBdYanBnjqDE9d4Q2Rl0vEWWv_2anMCS3YH9v-an4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049492859</pqid></control><display><type>article</type><title>A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Xu ; Peng, Qinglong ; Lv, Hongwu ; Zhan, Dingjia ; Hu, Qiang ; Du, Junwei ; Gong, Dunwei</creator><creatorcontrib>Yu, Xu ; Peng, Qinglong ; Lv, Hongwu ; Zhan, Dingjia ; Hu, Qiang ; Du, Junwei ; Gong, Dunwei</creatorcontrib><description>Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption behavior of other heterogeneous products, so we combine the consumer behavior of other heterogeneous products in the auxiliary domain to improve the recommendation performance of industrial IoT devices in the target domain. Due to privacy-preserving requirements, the original scoring information of the auxiliary domain is often not allowed to be directly shared with the target domain. Therefore, we propose a Privacy-Preserving Cross-Domain Recommendation algorithm for industrial IoT devices. First, the non-privacy preference features are extracted through the auxiliary domain scoring data. Next, the extracted preference features are fused with the target domain information. Extensive experiments have been conducted on the Amazon dataset to verify the effectiveness of our method.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2023.3324968</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Data mining ; Decoding ; Devices ; Feature extraction ; Industrial applications ; Industrial Internet of Things ; Industry 40 ; Internet of Things ; Optimization ; Privacy ; privacy-preserving ; recommendation algorithm ; Recommender systems</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.227-237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-7d6949a949f3ae136da321b880d1f06d82ad5c43a0bc7fc3625455bbb0f333283</cites><orcidid>0000-0003-4913-5734 ; 0000-0002-1917-3978 ; 0000-0003-2838-4301 ; 0000-0002-0681-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10287129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Peng, Qinglong</creatorcontrib><creatorcontrib>Lv, Hongwu</creatorcontrib><creatorcontrib>Zhan, Dingjia</creatorcontrib><creatorcontrib>Hu, Qiang</creatorcontrib><creatorcontrib>Du, Junwei</creatorcontrib><creatorcontrib>Gong, Dunwei</creatorcontrib><title>A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption behavior of other heterogeneous products, so we combine the consumer behavior of other heterogeneous products in the auxiliary domain to improve the recommendation performance of industrial IoT devices in the target domain. Due to privacy-preserving requirements, the original scoring information of the auxiliary domain is often not allowed to be directly shared with the target domain. Therefore, we propose a Privacy-Preserving Cross-Domain Recommendation algorithm for industrial IoT devices. First, the non-privacy preference features are extracted through the auxiliary domain scoring data. Next, the extracted preference features are fused with the target domain information. Extensive experiments have been conducted on the Amazon dataset to verify the effectiveness of our method.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Devices</subject><subject>Feature extraction</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Industry 40</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>recommendation algorithm</subject><subject>Recommender systems</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1vwjAUxK2qlUpp9w4dLHVO-vyVOCMKtEVCKqpgthzHoUYkpnZA4r9vEAwdnm65u6f7IfRMICUEirdVOUspUJYyRnmRyRs0IkLIhBOa36IRQCETBhm7Rw8xbgEIF1SO0HqCl8EdtTkly2CjDUfXbXAZfIzJ1LfadfjbGt-2tqt173yHJ7uND67_aXHjA5539SH2wekdnvsVntqjMzY-ortG76J9uuoYrd9nq_IzWXx9zMvJIjGUiz7J66zghR6uYdoSltWaUVJJCTVpIKsl1bUwnGmoTN4YllHBhaiqCho2zJRsjF4vvfvgfw829mrrD6EbXioGfOilUhSDCy4uc54VbKP2wbU6nBQBdYanBnjqDE9d4Q2Rl0vEWWv_2anMCS3YH9v-an4</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yu, Xu</creator><creator>Peng, Qinglong</creator><creator>Lv, Hongwu</creator><creator>Zhan, Dingjia</creator><creator>Hu, Qiang</creator><creator>Du, Junwei</creator><creator>Gong, Dunwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4913-5734</orcidid><orcidid>https://orcid.org/0000-0002-1917-3978</orcidid><orcidid>https://orcid.org/0000-0003-2838-4301</orcidid><orcidid>https://orcid.org/0000-0002-0681-6102</orcidid></search><sort><creationdate>20240201</creationdate><title>A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices</title><author>Yu, Xu ; Peng, Qinglong ; Lv, Hongwu ; Zhan, Dingjia ; Hu, Qiang ; Du, Junwei ; Gong, Dunwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7d6949a949f3ae136da321b880d1f06d82ad5c43a0bc7fc3625455bbb0f333283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Devices</topic><topic>Feature extraction</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Industry 40</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>recommendation algorithm</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Peng, Qinglong</creatorcontrib><creatorcontrib>Lv, Hongwu</creatorcontrib><creatorcontrib>Zhan, Dingjia</creatorcontrib><creatorcontrib>Hu, Qiang</creatorcontrib><creatorcontrib>Du, Junwei</creatorcontrib><creatorcontrib>Gong, Dunwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Xu</au><au>Peng, Qinglong</au><au>Lv, Hongwu</au><au>Zhan, Dingjia</au><au>Hu, Qiang</au><au>Du, Junwei</au><au>Gong, Dunwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>227</spage><epage>237</epage><pages>227-237</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption behavior of other heterogeneous products, so we combine the consumer behavior of other heterogeneous products in the auxiliary domain to improve the recommendation performance of industrial IoT devices in the target domain. Due to privacy-preserving requirements, the original scoring information of the auxiliary domain is often not allowed to be directly shared with the target domain. Therefore, we propose a Privacy-Preserving Cross-Domain Recommendation algorithm for industrial IoT devices. First, the non-privacy preference features are extracted through the auxiliary domain scoring data. Next, the extracted preference features are fused with the target domain information. Extensive experiments have been conducted on the Amazon dataset to verify the effectiveness of our method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2023.3324968</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4913-5734</orcidid><orcidid>https://orcid.org/0000-0002-1917-3978</orcidid><orcidid>https://orcid.org/0000-0003-2838-4301</orcidid><orcidid>https://orcid.org/0000-0002-0681-6102</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.227-237 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_ieee_primary_10287129 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Data mining Decoding Devices Feature extraction Industrial applications Industrial Internet of Things Industry 40 Internet of Things Optimization Privacy privacy-preserving recommendation algorithm Recommender systems |
title | A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving%20Cross-Domain%20Recommendation%20Algorithm%20for%20Industrial%20IoT%20Devices&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Yu,%20Xu&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=227&rft.epage=237&rft.pages=227-237&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2023.3324968&rft_dat=%3Cproquest_RIE%3E3049492859%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049492859&rft_id=info:pmid/&rft_ieee_id=10287129&rfr_iscdi=true |