A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices

Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.227-237
Hauptverfasser: Yu, Xu, Peng, Qinglong, Lv, Hongwu, Zhan, Dingjia, Hu, Qiang, Du, Junwei, Gong, Dunwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 1
container_start_page 227
container_title IEEE transactions on consumer electronics
container_volume 70
creator Yu, Xu
Peng, Qinglong
Lv, Hongwu
Zhan, Dingjia
Hu, Qiang
Du, Junwei
Gong, Dunwei
description Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption behavior of other heterogeneous products, so we combine the consumer behavior of other heterogeneous products in the auxiliary domain to improve the recommendation performance of industrial IoT devices in the target domain. Due to privacy-preserving requirements, the original scoring information of the auxiliary domain is often not allowed to be directly shared with the target domain. Therefore, we propose a Privacy-Preserving Cross-Domain Recommendation algorithm for industrial IoT devices. First, the non-privacy preference features are extracted through the auxiliary domain scoring data. Next, the extracted preference features are fused with the target domain information. Extensive experiments have been conducted on the Amazon dataset to verify the effectiveness of our method.
doi_str_mv 10.1109/TCE.2023.3324968
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10287129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287129</ieee_id><sourcerecordid>3049492859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7d6949a949f3ae136da321b880d1f06d82ad5c43a0bc7fc3625455bbb0f333283</originalsourceid><addsrcrecordid>eNpNkL1vwjAUxK2qlUpp9w4dLHVO-vyVOCMKtEVCKqpgthzHoUYkpnZA4r9vEAwdnm65u6f7IfRMICUEirdVOUspUJYyRnmRyRs0IkLIhBOa36IRQCETBhm7Rw8xbgEIF1SO0HqCl8EdtTkly2CjDUfXbXAZfIzJ1LfadfjbGt-2tqt173yHJ7uND67_aXHjA5539SH2wekdnvsVntqjMzY-ortG76J9uuoYrd9nq_IzWXx9zMvJIjGUiz7J66zghR6uYdoSltWaUVJJCTVpIKsl1bUwnGmoTN4YllHBhaiqCho2zJRsjF4vvfvgfw829mrrD6EbXioGfOilUhSDCy4uc54VbKP2wbU6nBQBdYanBnjqDE9d4Q2Rl0vEWWv_2anMCS3YH9v-an4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049492859</pqid></control><display><type>article</type><title>A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Xu ; Peng, Qinglong ; Lv, Hongwu ; Zhan, Dingjia ; Hu, Qiang ; Du, Junwei ; Gong, Dunwei</creator><creatorcontrib>Yu, Xu ; Peng, Qinglong ; Lv, Hongwu ; Zhan, Dingjia ; Hu, Qiang ; Du, Junwei ; Gong, Dunwei</creatorcontrib><description>Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption behavior of other heterogeneous products, so we combine the consumer behavior of other heterogeneous products in the auxiliary domain to improve the recommendation performance of industrial IoT devices in the target domain. Due to privacy-preserving requirements, the original scoring information of the auxiliary domain is often not allowed to be directly shared with the target domain. Therefore, we propose a Privacy-Preserving Cross-Domain Recommendation algorithm for industrial IoT devices. First, the non-privacy preference features are extracted through the auxiliary domain scoring data. Next, the extracted preference features are fused with the target domain information. Extensive experiments have been conducted on the Amazon dataset to verify the effectiveness of our method.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2023.3324968</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Data mining ; Decoding ; Devices ; Feature extraction ; Industrial applications ; Industrial Internet of Things ; Industry 40 ; Internet of Things ; Optimization ; Privacy ; privacy-preserving ; recommendation algorithm ; Recommender systems</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.227-237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-7d6949a949f3ae136da321b880d1f06d82ad5c43a0bc7fc3625455bbb0f333283</cites><orcidid>0000-0003-4913-5734 ; 0000-0002-1917-3978 ; 0000-0003-2838-4301 ; 0000-0002-0681-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10287129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Peng, Qinglong</creatorcontrib><creatorcontrib>Lv, Hongwu</creatorcontrib><creatorcontrib>Zhan, Dingjia</creatorcontrib><creatorcontrib>Hu, Qiang</creatorcontrib><creatorcontrib>Du, Junwei</creatorcontrib><creatorcontrib>Gong, Dunwei</creatorcontrib><title>A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption behavior of other heterogeneous products, so we combine the consumer behavior of other heterogeneous products in the auxiliary domain to improve the recommendation performance of industrial IoT devices in the target domain. Due to privacy-preserving requirements, the original scoring information of the auxiliary domain is often not allowed to be directly shared with the target domain. Therefore, we propose a Privacy-Preserving Cross-Domain Recommendation algorithm for industrial IoT devices. First, the non-privacy preference features are extracted through the auxiliary domain scoring data. Next, the extracted preference features are fused with the target domain information. Extensive experiments have been conducted on the Amazon dataset to verify the effectiveness of our method.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Devices</subject><subject>Feature extraction</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Industry 40</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>recommendation algorithm</subject><subject>Recommender systems</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1vwjAUxK2qlUpp9w4dLHVO-vyVOCMKtEVCKqpgthzHoUYkpnZA4r9vEAwdnm65u6f7IfRMICUEirdVOUspUJYyRnmRyRs0IkLIhBOa36IRQCETBhm7Rw8xbgEIF1SO0HqCl8EdtTkly2CjDUfXbXAZfIzJ1LfadfjbGt-2tqt173yHJ7uND67_aXHjA5539SH2wekdnvsVntqjMzY-ortG76J9uuoYrd9nq_IzWXx9zMvJIjGUiz7J66zghR6uYdoSltWaUVJJCTVpIKsl1bUwnGmoTN4YllHBhaiqCho2zJRsjF4vvfvgfw829mrrD6EbXioGfOilUhSDCy4uc54VbKP2wbU6nBQBdYanBnjqDE9d4Q2Rl0vEWWv_2anMCS3YH9v-an4</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yu, Xu</creator><creator>Peng, Qinglong</creator><creator>Lv, Hongwu</creator><creator>Zhan, Dingjia</creator><creator>Hu, Qiang</creator><creator>Du, Junwei</creator><creator>Gong, Dunwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4913-5734</orcidid><orcidid>https://orcid.org/0000-0002-1917-3978</orcidid><orcidid>https://orcid.org/0000-0003-2838-4301</orcidid><orcidid>https://orcid.org/0000-0002-0681-6102</orcidid></search><sort><creationdate>20240201</creationdate><title>A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices</title><author>Yu, Xu ; Peng, Qinglong ; Lv, Hongwu ; Zhan, Dingjia ; Hu, Qiang ; Du, Junwei ; Gong, Dunwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7d6949a949f3ae136da321b880d1f06d82ad5c43a0bc7fc3625455bbb0f333283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Devices</topic><topic>Feature extraction</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Industry 40</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>recommendation algorithm</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Peng, Qinglong</creatorcontrib><creatorcontrib>Lv, Hongwu</creatorcontrib><creatorcontrib>Zhan, Dingjia</creatorcontrib><creatorcontrib>Hu, Qiang</creatorcontrib><creatorcontrib>Du, Junwei</creatorcontrib><creatorcontrib>Gong, Dunwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Xu</au><au>Peng, Qinglong</au><au>Lv, Hongwu</au><au>Zhan, Dingjia</au><au>Hu, Qiang</au><au>Du, Junwei</au><au>Gong, Dunwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>227</spage><epage>237</epage><pages>227-237</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Recommendation algorithms have been initially applied on the online business platform of industrial Internet of Things (IoT) devices. However, traditional recommendation algorithms are often difficult to solve the data sparsity problem. In fact, online shoppers are often accompanied by consumption behavior of other heterogeneous products, so we combine the consumer behavior of other heterogeneous products in the auxiliary domain to improve the recommendation performance of industrial IoT devices in the target domain. Due to privacy-preserving requirements, the original scoring information of the auxiliary domain is often not allowed to be directly shared with the target domain. Therefore, we propose a Privacy-Preserving Cross-Domain Recommendation algorithm for industrial IoT devices. First, the non-privacy preference features are extracted through the auxiliary domain scoring data. Next, the extracted preference features are fused with the target domain information. Extensive experiments have been conducted on the Amazon dataset to verify the effectiveness of our method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2023.3324968</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4913-5734</orcidid><orcidid>https://orcid.org/0000-0002-1917-3978</orcidid><orcidid>https://orcid.org/0000-0003-2838-4301</orcidid><orcidid>https://orcid.org/0000-0002-0681-6102</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.227-237
issn 0098-3063
1558-4127
language eng
recordid cdi_ieee_primary_10287129
source IEEE Electronic Library (IEL)
subjects Algorithms
Data mining
Decoding
Devices
Feature extraction
Industrial applications
Industrial Internet of Things
Industry 40
Internet of Things
Optimization
Privacy
privacy-preserving
recommendation algorithm
Recommender systems
title A Privacy-Preserving Cross-Domain Recommendation Algorithm for Industrial IoT Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving%20Cross-Domain%20Recommendation%20Algorithm%20for%20Industrial%20IoT%20Devices&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Yu,%20Xu&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=227&rft.epage=237&rft.pages=227-237&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2023.3324968&rft_dat=%3Cproquest_RIE%3E3049492859%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049492859&rft_id=info:pmid/&rft_ieee_id=10287129&rfr_iscdi=true