Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)

The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2023, Vol.20, p.1-5
Hauptverfasser: Lasaponara, Rosa, Fattore, Carmen, Modica, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 20
creator Lasaponara, Rosa
Fattore, Carmen
Modica, Giuseppe
description The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the impact of fire was found to cause ambiguous effects in complex and fragmented ecosystems. For our investigation, the effectiveness of S1 and S2 fire metrics was first statistically analyzed using ISODATA coupled with field surveys conducted for a fire that occurred on 13 July 2019 in Sardinia. Later, to automatically map burn areas and categorize fire severity, S1 and S2 fire metrics were integrated through a multilevel classification performed at a pixel and feature level. Results were successful (accuracy higher than 94%) compared with independent data sets and in situ investigations.
doi_str_mv 10.1109/LGRS.2023.3324945
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10286844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10286844</ieee_id><sourcerecordid>2889730218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ad6a1063ec810adbaf544d64ffa0d8fe91bb5468f135608454b45e48fe4ea0073</originalsourceid><addsrcrecordid>eNpNUd1OwjAUXowmIvoAJl408UYvhu3abp13SgBJMCQCiXfLgZ5hCXTYFhNexyd1E2K8On_fT3K-KLpmtMMYzR9Gg7dJJ6EJ73CeiFzIk6jFpFQxlRk7bXohY5mr9_PowvsVpYlQKmtF38MNLI1dkueds6jJk0PwBKwmfeOQTPALnQl7Yix5RW0COgcWwZK-g-UGbag5vUXl9z7gxpOZb7Qm9d5YXMfsV-lvTB7J9ANJF3ytHHZ6T6qSTCsXqrWJx8u1AR8cHJzvJuC0sQbuL6OzEtYer461Hc36vWn3JR6NB8Pu0yhecJ6FGHQKjKYcF4pR0HMopRA6FWUJVKsSczafS5GqknGZUiWkmAuJor4IBEoz3o5uD7pbV33u0IdiVdVPqS2LRKk84zRhqkaxA2rhKu8dlsXWmQ24fcFo0URRNFEUTRTFMYqac3PgGET8h09UqoTgPxYZhpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889730218</pqid></control><display><type>article</type><title>Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)</title><source>IEEE Electronic Library Online</source><creator>Lasaponara, Rosa ; Fattore, Carmen ; Modica, Giuseppe</creator><creatorcontrib>Lasaponara, Rosa ; Fattore, Carmen ; Modica, Giuseppe</creatorcontrib><description>The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the impact of fire was found to cause ambiguous effects in complex and fragmented ecosystems. For our investigation, the effectiveness of S1 and S2 fire metrics was first statistically analyzed using ISODATA coupled with field surveys conducted for a fire that occurred on 13 July 2019 in Sardinia. Later, to automatically map burn areas and categorize fire severity, S1 and S2 fire metrics were integrated through a multilevel classification performed at a pixel and feature level. Results were successful (accuracy higher than 94%) compared with independent data sets and in situ investigations.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3324945</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Burned area ; Ecosystems ; fire severity ; Fires ; Forestry ; Geoscience and remote sensing ; Indexes ; Measurement ; Mediterranean shrubs ; multilevel classification ; SAR (radar) ; spatial autocorrelation ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Vegetation mapping ; wildfires</subject><ispartof>IEEE geoscience and remote sensing letters, 2023, Vol.20, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ad6a1063ec810adbaf544d64ffa0d8fe91bb5468f135608454b45e48fe4ea0073</citedby><cites>FETCH-LOGICAL-c337t-ad6a1063ec810adbaf544d64ffa0d8fe91bb5468f135608454b45e48fe4ea0073</cites><orcidid>0000-0002-0388-0256 ; 0000-0002-1287-646X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10286844$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Lasaponara, Rosa</creatorcontrib><creatorcontrib>Fattore, Carmen</creatorcontrib><creatorcontrib>Modica, Giuseppe</creatorcontrib><title>Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the impact of fire was found to cause ambiguous effects in complex and fragmented ecosystems. For our investigation, the effectiveness of S1 and S2 fire metrics was first statistically analyzed using ISODATA coupled with field surveys conducted for a fire that occurred on 13 July 2019 in Sardinia. Later, to automatically map burn areas and categorize fire severity, S1 and S2 fire metrics were integrated through a multilevel classification performed at a pixel and feature level. Results were successful (accuracy higher than 94%) compared with independent data sets and in situ investigations.</description><subject>Burned area</subject><subject>Ecosystems</subject><subject>fire severity</subject><subject>Fires</subject><subject>Forestry</subject><subject>Geoscience and remote sensing</subject><subject>Indexes</subject><subject>Measurement</subject><subject>Mediterranean shrubs</subject><subject>multilevel classification</subject><subject>SAR (radar)</subject><subject>spatial autocorrelation</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Vegetation mapping</subject><subject>wildfires</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNUd1OwjAUXowmIvoAJl408UYvhu3abp13SgBJMCQCiXfLgZ5hCXTYFhNexyd1E2K8On_fT3K-KLpmtMMYzR9Gg7dJJ6EJ73CeiFzIk6jFpFQxlRk7bXohY5mr9_PowvsVpYlQKmtF38MNLI1dkueds6jJk0PwBKwmfeOQTPALnQl7Yix5RW0COgcWwZK-g-UGbag5vUXl9z7gxpOZb7Qm9d5YXMfsV-lvTB7J9ANJF3ytHHZ6T6qSTCsXqrWJx8u1AR8cHJzvJuC0sQbuL6OzEtYer461Hc36vWn3JR6NB8Pu0yhecJ6FGHQKjKYcF4pR0HMopRA6FWUJVKsSczafS5GqknGZUiWkmAuJor4IBEoz3o5uD7pbV33u0IdiVdVPqS2LRKk84zRhqkaxA2rhKu8dlsXWmQ24fcFo0URRNFEUTRTFMYqac3PgGET8h09UqoTgPxYZhpI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Lasaponara, Rosa</creator><creator>Fattore, Carmen</creator><creator>Modica, Giuseppe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0388-0256</orcidid><orcidid>https://orcid.org/0000-0002-1287-646X</orcidid></search><sort><creationdate>2023</creationdate><title>Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)</title><author>Lasaponara, Rosa ; Fattore, Carmen ; Modica, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ad6a1063ec810adbaf544d64ffa0d8fe91bb5468f135608454b45e48fe4ea0073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Burned area</topic><topic>Ecosystems</topic><topic>fire severity</topic><topic>Fires</topic><topic>Forestry</topic><topic>Geoscience and remote sensing</topic><topic>Indexes</topic><topic>Measurement</topic><topic>Mediterranean shrubs</topic><topic>multilevel classification</topic><topic>SAR (radar)</topic><topic>spatial autocorrelation</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Vegetation mapping</topic><topic>wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasaponara, Rosa</creatorcontrib><creatorcontrib>Fattore, Carmen</creatorcontrib><creatorcontrib>Modica, Giuseppe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasaponara, Rosa</au><au>Fattore, Carmen</au><au>Modica, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the impact of fire was found to cause ambiguous effects in complex and fragmented ecosystems. For our investigation, the effectiveness of S1 and S2 fire metrics was first statistically analyzed using ISODATA coupled with field surveys conducted for a fire that occurred on 13 July 2019 in Sardinia. Later, to automatically map burn areas and categorize fire severity, S1 and S2 fire metrics were integrated through a multilevel classification performed at a pixel and feature level. Results were successful (accuracy higher than 94%) compared with independent data sets and in situ investigations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3324945</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0388-0256</orcidid><orcidid>https://orcid.org/0000-0002-1287-646X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023, Vol.20, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_10286844
source IEEE Electronic Library Online
subjects Burned area
Ecosystems
fire severity
Fires
Forestry
Geoscience and remote sensing
Indexes
Measurement
Mediterranean shrubs
multilevel classification
SAR (radar)
spatial autocorrelation
Synthetic aperture radar
synthetic aperture radar (SAR)
Vegetation mapping
wildfires
title Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Burned%20Areas%20and%20Fire%20Severity%20in%20Mediterranean%20Fragmented%20Ecosystems%20Using%20Sentinel-1%20and%20Sentinel-2:%20The%20Case%20Study%20of%20Tortoli-Ogliastra%20Fire%20(Sardinia)&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lasaponara,%20Rosa&rft.date=2023&rft.volume=20&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3324945&rft_dat=%3Cproquest_ieee_%3E2889730218%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889730218&rft_id=info:pmid/&rft_ieee_id=10286844&rfr_iscdi=true