Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)
The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2023, Vol.20, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 20 |
creator | Lasaponara, Rosa Fattore, Carmen Modica, Giuseppe |
description | The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the impact of fire was found to cause ambiguous effects in complex and fragmented ecosystems. For our investigation, the effectiveness of S1 and S2 fire metrics was first statistically analyzed using ISODATA coupled with field surveys conducted for a fire that occurred on 13 July 2019 in Sardinia. Later, to automatically map burn areas and categorize fire severity, S1 and S2 fire metrics were integrated through a multilevel classification performed at a pixel and feature level. Results were successful (accuracy higher than 94%) compared with independent data sets and in situ investigations. |
doi_str_mv | 10.1109/LGRS.2023.3324945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10286844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10286844</ieee_id><sourcerecordid>2889730218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ad6a1063ec810adbaf544d64ffa0d8fe91bb5468f135608454b45e48fe4ea0073</originalsourceid><addsrcrecordid>eNpNUd1OwjAUXowmIvoAJl408UYvhu3abp13SgBJMCQCiXfLgZ5hCXTYFhNexyd1E2K8On_fT3K-KLpmtMMYzR9Gg7dJJ6EJ73CeiFzIk6jFpFQxlRk7bXohY5mr9_PowvsVpYlQKmtF38MNLI1dkueds6jJk0PwBKwmfeOQTPALnQl7Yix5RW0COgcWwZK-g-UGbag5vUXl9z7gxpOZb7Qm9d5YXMfsV-lvTB7J9ANJF3ytHHZ6T6qSTCsXqrWJx8u1AR8cHJzvJuC0sQbuL6OzEtYer461Hc36vWn3JR6NB8Pu0yhecJ6FGHQKjKYcF4pR0HMopRA6FWUJVKsSczafS5GqknGZUiWkmAuJor4IBEoz3o5uD7pbV33u0IdiVdVPqS2LRKk84zRhqkaxA2rhKu8dlsXWmQ24fcFo0URRNFEUTRTFMYqac3PgGET8h09UqoTgPxYZhpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889730218</pqid></control><display><type>article</type><title>Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)</title><source>IEEE Electronic Library Online</source><creator>Lasaponara, Rosa ; Fattore, Carmen ; Modica, Giuseppe</creator><creatorcontrib>Lasaponara, Rosa ; Fattore, Carmen ; Modica, Giuseppe</creatorcontrib><description>The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the impact of fire was found to cause ambiguous effects in complex and fragmented ecosystems. For our investigation, the effectiveness of S1 and S2 fire metrics was first statistically analyzed using ISODATA coupled with field surveys conducted for a fire that occurred on 13 July 2019 in Sardinia. Later, to automatically map burn areas and categorize fire severity, S1 and S2 fire metrics were integrated through a multilevel classification performed at a pixel and feature level. Results were successful (accuracy higher than 94%) compared with independent data sets and in situ investigations.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3324945</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Burned area ; Ecosystems ; fire severity ; Fires ; Forestry ; Geoscience and remote sensing ; Indexes ; Measurement ; Mediterranean shrubs ; multilevel classification ; SAR (radar) ; spatial autocorrelation ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Vegetation mapping ; wildfires</subject><ispartof>IEEE geoscience and remote sensing letters, 2023, Vol.20, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ad6a1063ec810adbaf544d64ffa0d8fe91bb5468f135608454b45e48fe4ea0073</citedby><cites>FETCH-LOGICAL-c337t-ad6a1063ec810adbaf544d64ffa0d8fe91bb5468f135608454b45e48fe4ea0073</cites><orcidid>0000-0002-0388-0256 ; 0000-0002-1287-646X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10286844$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Lasaponara, Rosa</creatorcontrib><creatorcontrib>Fattore, Carmen</creatorcontrib><creatorcontrib>Modica, Giuseppe</creatorcontrib><title>Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the impact of fire was found to cause ambiguous effects in complex and fragmented ecosystems. For our investigation, the effectiveness of S1 and S2 fire metrics was first statistically analyzed using ISODATA coupled with field surveys conducted for a fire that occurred on 13 July 2019 in Sardinia. Later, to automatically map burn areas and categorize fire severity, S1 and S2 fire metrics were integrated through a multilevel classification performed at a pixel and feature level. Results were successful (accuracy higher than 94%) compared with independent data sets and in situ investigations.</description><subject>Burned area</subject><subject>Ecosystems</subject><subject>fire severity</subject><subject>Fires</subject><subject>Forestry</subject><subject>Geoscience and remote sensing</subject><subject>Indexes</subject><subject>Measurement</subject><subject>Mediterranean shrubs</subject><subject>multilevel classification</subject><subject>SAR (radar)</subject><subject>spatial autocorrelation</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Vegetation mapping</subject><subject>wildfires</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNUd1OwjAUXowmIvoAJl408UYvhu3abp13SgBJMCQCiXfLgZ5hCXTYFhNexyd1E2K8On_fT3K-KLpmtMMYzR9Gg7dJJ6EJ73CeiFzIk6jFpFQxlRk7bXohY5mr9_PowvsVpYlQKmtF38MNLI1dkueds6jJk0PwBKwmfeOQTPALnQl7Yix5RW0COgcWwZK-g-UGbag5vUXl9z7gxpOZb7Qm9d5YXMfsV-lvTB7J9ANJF3ytHHZ6T6qSTCsXqrWJx8u1AR8cHJzvJuC0sQbuL6OzEtYer461Hc36vWn3JR6NB8Pu0yhecJ6FGHQKjKYcF4pR0HMopRA6FWUJVKsSczafS5GqknGZUiWkmAuJor4IBEoz3o5uD7pbV33u0IdiVdVPqS2LRKk84zRhqkaxA2rhKu8dlsXWmQ24fcFo0URRNFEUTRTFMYqac3PgGET8h09UqoTgPxYZhpI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Lasaponara, Rosa</creator><creator>Fattore, Carmen</creator><creator>Modica, Giuseppe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0388-0256</orcidid><orcidid>https://orcid.org/0000-0002-1287-646X</orcidid></search><sort><creationdate>2023</creationdate><title>Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)</title><author>Lasaponara, Rosa ; Fattore, Carmen ; Modica, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ad6a1063ec810adbaf544d64ffa0d8fe91bb5468f135608454b45e48fe4ea0073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Burned area</topic><topic>Ecosystems</topic><topic>fire severity</topic><topic>Fires</topic><topic>Forestry</topic><topic>Geoscience and remote sensing</topic><topic>Indexes</topic><topic>Measurement</topic><topic>Mediterranean shrubs</topic><topic>multilevel classification</topic><topic>SAR (radar)</topic><topic>spatial autocorrelation</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Vegetation mapping</topic><topic>wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasaponara, Rosa</creatorcontrib><creatorcontrib>Fattore, Carmen</creatorcontrib><creatorcontrib>Modica, Giuseppe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasaponara, Rosa</au><au>Fattore, Carmen</au><au>Modica, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia)</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The study aims to explore the added value of the joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing burn severity in heterogeneous, fragmented ecosystems. The importance of this aim lies in the fact that for both S2 and S1 (as for all the synthetic aperture radar (SAR) C-bands), the impact of fire was found to cause ambiguous effects in complex and fragmented ecosystems. For our investigation, the effectiveness of S1 and S2 fire metrics was first statistically analyzed using ISODATA coupled with field surveys conducted for a fire that occurred on 13 July 2019 in Sardinia. Later, to automatically map burn areas and categorize fire severity, S1 and S2 fire metrics were integrated through a multilevel classification performed at a pixel and feature level. Results were successful (accuracy higher than 94%) compared with independent data sets and in situ investigations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3324945</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0388-0256</orcidid><orcidid>https://orcid.org/0000-0002-1287-646X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2023, Vol.20, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_10286844 |
source | IEEE Electronic Library Online |
subjects | Burned area Ecosystems fire severity Fires Forestry Geoscience and remote sensing Indexes Measurement Mediterranean shrubs multilevel classification SAR (radar) spatial autocorrelation Synthetic aperture radar synthetic aperture radar (SAR) Vegetation mapping wildfires |
title | Imaging Burned Areas and Fire Severity in Mediterranean Fragmented Ecosystems Using Sentinel-1 and Sentinel-2: The Case Study of Tortoli-Ogliastra Fire (Sardinia) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Burned%20Areas%20and%20Fire%20Severity%20in%20Mediterranean%20Fragmented%20Ecosystems%20Using%20Sentinel-1%20and%20Sentinel-2:%20The%20Case%20Study%20of%20Tortoli-Ogliastra%20Fire%20(Sardinia)&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lasaponara,%20Rosa&rft.date=2023&rft.volume=20&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3324945&rft_dat=%3Cproquest_ieee_%3E2889730218%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889730218&rft_id=info:pmid/&rft_ieee_id=10286844&rfr_iscdi=true |