Hierarchical Joint Graph Learning and Multivariate Time Series Forecasting

Multivariate time series is prevalent in many scientific and industrial domains. Modeling multivariate signals is challenging due to their long-range temporal dependencies and intricate interactions-both direct and indirect. To confront these complexities, we introduce a method of representing multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.118386-118394
Hauptverfasser: Kim, Juhyeon, Lee, Hyungeun, Yu, Seungwon, Hwang, Ung, Jung, Wooyeol, Yoon, Kijung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!