Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition
Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facia...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Perveen, Gulnaz Ali, Syed Farooq Ahmad, Jameel Shahab, Sana Adnan, Muhammad Anjum, Mohd Khosa, Ikramullah |
description | Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facial micro-expression recognition. The multi-stream network uses the deep features of a residual network, densely connected convolutional network, and visual geometry group. The features of these aforementioned architectures are extracted from their pooling layers and become very resource-intensive due to their high dimensions. The principal component analysis is applied to these features for their dimensionality reduction. Stacking, an ensemble classification technique, is performed on these deep features with three base learners (random tree, J48, random forest) and a meta learner (random forest). Experiments were performed using publicly available datasets, namely: CASME-II, CASME2, SMIC, and SAMM. The proposed approach (PA) is compared with twelve approaches. The results show that the PA outperformed the existing approaches in terms of accuracy and time efficiency. |
doi_str_mv | 10.1109/ACCESS.2023.3325108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10286498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10286498</ieee_id><doaj_id>oai_doaj_org_article_85a3ebf287be4678b69d40ba69dc12e2</doaj_id><sourcerecordid>2884893201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c7261f402f91df5320fedc6776843c747878b8889c5fa07582e1d79526b237a33</originalsourceid><addsrcrecordid>eNpNkUtP4zAUhSM0SKAOvwAWkWad4kfixxJl2gGpHSQea8txrovbNO7YCQz_HneCRnhzrKtzPl_rZNklRnOMkby-qevF4-OcIELnlJIKI3GSnRPMZEEryr59uZ9lFzFuUToijSp-nu3WYze4Ig4B9D7_CXDIa9-_-m4cnO_z3zAG3SUZ3nzY5W9ueMkXfYR900G-Ah16129y60O-1MYl59qZ4Av4ewgQ45HwAMZvenekfc9Ore4iXHzqLHteLp7q22J1_-uuvlkVpkRyKAwnDNsSEStxaytKkIXWMM6ZKKnhJRdcNEIIaSqrEa8EAdxyWRHWEMo1pbPsbuK2Xm_VIbi9Du_Ka6f-DXzYKB0GZzpQotIUGksEb6BkictkW6JGJzGYAEmsHxPrEPyfEeKgtn4MfVpfESFKIdN6OLno5EqfjzGA_f8qRupYkppKUseS1GdJKXU1pRwAfEkQwUop6AeSs42q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893201</pqid></control><display><type>article</type><title>Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Perveen, Gulnaz ; Ali, Syed Farooq ; Ahmad, Jameel ; Shahab, Sana ; Adnan, Muhammad ; Anjum, Mohd ; Khosa, Ikramullah</creator><creatorcontrib>Perveen, Gulnaz ; Ali, Syed Farooq ; Ahmad, Jameel ; Shahab, Sana ; Adnan, Muhammad ; Anjum, Mohd ; Khosa, Ikramullah</creatorcontrib><description>Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facial micro-expression recognition. The multi-stream network uses the deep features of a residual network, densely connected convolutional network, and visual geometry group. The features of these aforementioned architectures are extracted from their pooling layers and become very resource-intensive due to their high dimensions. The principal component analysis is applied to these features for their dimensionality reduction. Stacking, an ensemble classification technique, is performed on these deep features with three base learners (random tree, J48, random forest) and a meta learner (random forest). Experiments were performed using publicly available datasets, namely: CASME-II, CASME2, SMIC, and SAMM. The proposed approach (PA) is compared with twelve approaches. The results show that the PA outperformed the existing approaches in terms of accuracy and time efficiency.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3325108</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Classification ; Computational modeling ; Convolution neural network ; convolution neural networks ; Convolutional neural networks ; Decision trees ; Deep learning ; Ensemble classification ; Ensemble learning ; Face recognition ; Feature extraction ; Image color analysis ; Machine learning ; Micro-expression recognition ; Neural networks ; Principal components analysis ; Random forests ; Stacking</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c7261f402f91df5320fedc6776843c747878b8889c5fa07582e1d79526b237a33</citedby><cites>FETCH-LOGICAL-c409t-c7261f402f91df5320fedc6776843c747878b8889c5fa07582e1d79526b237a33</cites><orcidid>0000-0003-3943-903X ; 0000-0003-4094-3786 ; 0000-0001-6374-9682 ; 0000-0002-9149-9358 ; 0000-0003-4283-4946 ; 0000-0003-0254-3351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10286498$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Perveen, Gulnaz</creatorcontrib><creatorcontrib>Ali, Syed Farooq</creatorcontrib><creatorcontrib>Ahmad, Jameel</creatorcontrib><creatorcontrib>Shahab, Sana</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Anjum, Mohd</creatorcontrib><creatorcontrib>Khosa, Ikramullah</creatorcontrib><title>Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facial micro-expression recognition. The multi-stream network uses the deep features of a residual network, densely connected convolutional network, and visual geometry group. The features of these aforementioned architectures are extracted from their pooling layers and become very resource-intensive due to their high dimensions. The principal component analysis is applied to these features for their dimensionality reduction. Stacking, an ensemble classification technique, is performed on these deep features with three base learners (random tree, J48, random forest) and a meta learner (random forest). Experiments were performed using publicly available datasets, namely: CASME-II, CASME2, SMIC, and SAMM. The proposed approach (PA) is compared with twelve approaches. The results show that the PA outperformed the existing approaches in terms of accuracy and time efficiency.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Convolution neural network</subject><subject>convolution neural networks</subject><subject>Convolutional neural networks</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Ensemble classification</subject><subject>Ensemble learning</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>Machine learning</subject><subject>Micro-expression recognition</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Random forests</subject><subject>Stacking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtP4zAUhSM0SKAOvwAWkWad4kfixxJl2gGpHSQea8txrovbNO7YCQz_HneCRnhzrKtzPl_rZNklRnOMkby-qevF4-OcIELnlJIKI3GSnRPMZEEryr59uZ9lFzFuUToijSp-nu3WYze4Ig4B9D7_CXDIa9-_-m4cnO_z3zAG3SUZ3nzY5W9ueMkXfYR900G-Ah16129y60O-1MYl59qZ4Av4ewgQ45HwAMZvenekfc9Ore4iXHzqLHteLp7q22J1_-uuvlkVpkRyKAwnDNsSEStxaytKkIXWMM6ZKKnhJRdcNEIIaSqrEa8EAdxyWRHWEMo1pbPsbuK2Xm_VIbi9Du_Ka6f-DXzYKB0GZzpQotIUGksEb6BkictkW6JGJzGYAEmsHxPrEPyfEeKgtn4MfVpfESFKIdN6OLno5EqfjzGA_f8qRupYkppKUseS1GdJKXU1pRwAfEkQwUop6AeSs42q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Perveen, Gulnaz</creator><creator>Ali, Syed Farooq</creator><creator>Ahmad, Jameel</creator><creator>Shahab, Sana</creator><creator>Adnan, Muhammad</creator><creator>Anjum, Mohd</creator><creator>Khosa, Ikramullah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3943-903X</orcidid><orcidid>https://orcid.org/0000-0003-4094-3786</orcidid><orcidid>https://orcid.org/0000-0001-6374-9682</orcidid><orcidid>https://orcid.org/0000-0002-9149-9358</orcidid><orcidid>https://orcid.org/0000-0003-4283-4946</orcidid><orcidid>https://orcid.org/0000-0003-0254-3351</orcidid></search><sort><creationdate>20230101</creationdate><title>Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition</title><author>Perveen, Gulnaz ; Ali, Syed Farooq ; Ahmad, Jameel ; Shahab, Sana ; Adnan, Muhammad ; Anjum, Mohd ; Khosa, Ikramullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c7261f402f91df5320fedc6776843c747878b8889c5fa07582e1d79526b237a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Convolution neural network</topic><topic>convolution neural networks</topic><topic>Convolutional neural networks</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Ensemble classification</topic><topic>Ensemble learning</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>Machine learning</topic><topic>Micro-expression recognition</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Random forests</topic><topic>Stacking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perveen, Gulnaz</creatorcontrib><creatorcontrib>Ali, Syed Farooq</creatorcontrib><creatorcontrib>Ahmad, Jameel</creatorcontrib><creatorcontrib>Shahab, Sana</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Anjum, Mohd</creatorcontrib><creatorcontrib>Khosa, Ikramullah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perveen, Gulnaz</au><au>Ali, Syed Farooq</au><au>Ahmad, Jameel</au><au>Shahab, Sana</au><au>Adnan, Muhammad</au><au>Anjum, Mohd</au><au>Khosa, Ikramullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facial micro-expression recognition. The multi-stream network uses the deep features of a residual network, densely connected convolutional network, and visual geometry group. The features of these aforementioned architectures are extracted from their pooling layers and become very resource-intensive due to their high dimensions. The principal component analysis is applied to these features for their dimensionality reduction. Stacking, an ensemble classification technique, is performed on these deep features with three base learners (random tree, J48, random forest) and a meta learner (random forest). Experiments were performed using publicly available datasets, namely: CASME-II, CASME2, SMIC, and SAMM. The proposed approach (PA) is compared with twelve approaches. The results show that the PA outperformed the existing approaches in terms of accuracy and time efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3325108</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3943-903X</orcidid><orcidid>https://orcid.org/0000-0003-4094-3786</orcidid><orcidid>https://orcid.org/0000-0001-6374-9682</orcidid><orcidid>https://orcid.org/0000-0002-9149-9358</orcidid><orcidid>https://orcid.org/0000-0003-4283-4946</orcidid><orcidid>https://orcid.org/0000-0003-0254-3351</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10286498 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Classification Computational modeling Convolution neural network convolution neural networks Convolutional neural networks Decision trees Deep learning Ensemble classification Ensemble learning Face recognition Feature extraction Image color analysis Machine learning Micro-expression recognition Neural networks Principal components analysis Random forests Stacking |
title | Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-stream%20Deep%20Convolution%20Neural%20Network%20with%20Ensemble%20Learning%20for%20Facial%20Micro-expression%20Recognition&rft.jtitle=IEEE%20access&rft.au=Perveen,%20Gulnaz&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3325108&rft_dat=%3Cproquest_ieee_%3E2884893201%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884893201&rft_id=info:pmid/&rft_ieee_id=10286498&rft_doaj_id=oai_doaj_org_article_85a3ebf287be4678b69d40ba69dc12e2&rfr_iscdi=true |