Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition

Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Perveen, Gulnaz, Ali, Syed Farooq, Ahmad, Jameel, Shahab, Sana, Adnan, Muhammad, Anjum, Mohd, Khosa, Ikramullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Perveen, Gulnaz
Ali, Syed Farooq
Ahmad, Jameel
Shahab, Sana
Adnan, Muhammad
Anjum, Mohd
Khosa, Ikramullah
description Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facial micro-expression recognition. The multi-stream network uses the deep features of a residual network, densely connected convolutional network, and visual geometry group. The features of these aforementioned architectures are extracted from their pooling layers and become very resource-intensive due to their high dimensions. The principal component analysis is applied to these features for their dimensionality reduction. Stacking, an ensemble classification technique, is performed on these deep features with three base learners (random tree, J48, random forest) and a meta learner (random forest). Experiments were performed using publicly available datasets, namely: CASME-II, CASME2, SMIC, and SAMM. The proposed approach (PA) is compared with twelve approaches. The results show that the PA outperformed the existing approaches in terms of accuracy and time efficiency.
doi_str_mv 10.1109/ACCESS.2023.3325108
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10286498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10286498</ieee_id><doaj_id>oai_doaj_org_article_85a3ebf287be4678b69d40ba69dc12e2</doaj_id><sourcerecordid>2884893201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c7261f402f91df5320fedc6776843c747878b8889c5fa07582e1d79526b237a33</originalsourceid><addsrcrecordid>eNpNkUtP4zAUhSM0SKAOvwAWkWad4kfixxJl2gGpHSQea8txrovbNO7YCQz_HneCRnhzrKtzPl_rZNklRnOMkby-qevF4-OcIELnlJIKI3GSnRPMZEEryr59uZ9lFzFuUToijSp-nu3WYze4Ig4B9D7_CXDIa9-_-m4cnO_z3zAG3SUZ3nzY5W9ueMkXfYR900G-Ah16129y60O-1MYl59qZ4Av4ewgQ45HwAMZvenekfc9Ore4iXHzqLHteLp7q22J1_-uuvlkVpkRyKAwnDNsSEStxaytKkIXWMM6ZKKnhJRdcNEIIaSqrEa8EAdxyWRHWEMo1pbPsbuK2Xm_VIbi9Du_Ka6f-DXzYKB0GZzpQotIUGksEb6BkictkW6JGJzGYAEmsHxPrEPyfEeKgtn4MfVpfESFKIdN6OLno5EqfjzGA_f8qRupYkppKUseS1GdJKXU1pRwAfEkQwUop6AeSs42q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893201</pqid></control><display><type>article</type><title>Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Perveen, Gulnaz ; Ali, Syed Farooq ; Ahmad, Jameel ; Shahab, Sana ; Adnan, Muhammad ; Anjum, Mohd ; Khosa, Ikramullah</creator><creatorcontrib>Perveen, Gulnaz ; Ali, Syed Farooq ; Ahmad, Jameel ; Shahab, Sana ; Adnan, Muhammad ; Anjum, Mohd ; Khosa, Ikramullah</creatorcontrib><description>Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facial micro-expression recognition. The multi-stream network uses the deep features of a residual network, densely connected convolutional network, and visual geometry group. The features of these aforementioned architectures are extracted from their pooling layers and become very resource-intensive due to their high dimensions. The principal component analysis is applied to these features for their dimensionality reduction. Stacking, an ensemble classification technique, is performed on these deep features with three base learners (random tree, J48, random forest) and a meta learner (random forest). Experiments were performed using publicly available datasets, namely: CASME-II, CASME2, SMIC, and SAMM. The proposed approach (PA) is compared with twelve approaches. The results show that the PA outperformed the existing approaches in terms of accuracy and time efficiency.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3325108</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Classification ; Computational modeling ; Convolution neural network ; convolution neural networks ; Convolutional neural networks ; Decision trees ; Deep learning ; Ensemble classification ; Ensemble learning ; Face recognition ; Feature extraction ; Image color analysis ; Machine learning ; Micro-expression recognition ; Neural networks ; Principal components analysis ; Random forests ; Stacking</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c7261f402f91df5320fedc6776843c747878b8889c5fa07582e1d79526b237a33</citedby><cites>FETCH-LOGICAL-c409t-c7261f402f91df5320fedc6776843c747878b8889c5fa07582e1d79526b237a33</cites><orcidid>0000-0003-3943-903X ; 0000-0003-4094-3786 ; 0000-0001-6374-9682 ; 0000-0002-9149-9358 ; 0000-0003-4283-4946 ; 0000-0003-0254-3351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10286498$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Perveen, Gulnaz</creatorcontrib><creatorcontrib>Ali, Syed Farooq</creatorcontrib><creatorcontrib>Ahmad, Jameel</creatorcontrib><creatorcontrib>Shahab, Sana</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Anjum, Mohd</creatorcontrib><creatorcontrib>Khosa, Ikramullah</creatorcontrib><title>Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facial micro-expression recognition. The multi-stream network uses the deep features of a residual network, densely connected convolutional network, and visual geometry group. The features of these aforementioned architectures are extracted from their pooling layers and become very resource-intensive due to their high dimensions. The principal component analysis is applied to these features for their dimensionality reduction. Stacking, an ensemble classification technique, is performed on these deep features with three base learners (random tree, J48, random forest) and a meta learner (random forest). Experiments were performed using publicly available datasets, namely: CASME-II, CASME2, SMIC, and SAMM. The proposed approach (PA) is compared with twelve approaches. The results show that the PA outperformed the existing approaches in terms of accuracy and time efficiency.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Convolution neural network</subject><subject>convolution neural networks</subject><subject>Convolutional neural networks</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Ensemble classification</subject><subject>Ensemble learning</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>Machine learning</subject><subject>Micro-expression recognition</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Random forests</subject><subject>Stacking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtP4zAUhSM0SKAOvwAWkWad4kfixxJl2gGpHSQea8txrovbNO7YCQz_HneCRnhzrKtzPl_rZNklRnOMkby-qevF4-OcIELnlJIKI3GSnRPMZEEryr59uZ9lFzFuUToijSp-nu3WYze4Ig4B9D7_CXDIa9-_-m4cnO_z3zAG3SUZ3nzY5W9ueMkXfYR900G-Ah16129y60O-1MYl59qZ4Av4ewgQ45HwAMZvenekfc9Ore4iXHzqLHteLp7q22J1_-uuvlkVpkRyKAwnDNsSEStxaytKkIXWMM6ZKKnhJRdcNEIIaSqrEa8EAdxyWRHWEMo1pbPsbuK2Xm_VIbi9Du_Ka6f-DXzYKB0GZzpQotIUGksEb6BkictkW6JGJzGYAEmsHxPrEPyfEeKgtn4MfVpfESFKIdN6OLno5EqfjzGA_f8qRupYkppKUseS1GdJKXU1pRwAfEkQwUop6AeSs42q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Perveen, Gulnaz</creator><creator>Ali, Syed Farooq</creator><creator>Ahmad, Jameel</creator><creator>Shahab, Sana</creator><creator>Adnan, Muhammad</creator><creator>Anjum, Mohd</creator><creator>Khosa, Ikramullah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3943-903X</orcidid><orcidid>https://orcid.org/0000-0003-4094-3786</orcidid><orcidid>https://orcid.org/0000-0001-6374-9682</orcidid><orcidid>https://orcid.org/0000-0002-9149-9358</orcidid><orcidid>https://orcid.org/0000-0003-4283-4946</orcidid><orcidid>https://orcid.org/0000-0003-0254-3351</orcidid></search><sort><creationdate>20230101</creationdate><title>Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition</title><author>Perveen, Gulnaz ; Ali, Syed Farooq ; Ahmad, Jameel ; Shahab, Sana ; Adnan, Muhammad ; Anjum, Mohd ; Khosa, Ikramullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c7261f402f91df5320fedc6776843c747878b8889c5fa07582e1d79526b237a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Convolution neural network</topic><topic>convolution neural networks</topic><topic>Convolutional neural networks</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Ensemble classification</topic><topic>Ensemble learning</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>Machine learning</topic><topic>Micro-expression recognition</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Random forests</topic><topic>Stacking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perveen, Gulnaz</creatorcontrib><creatorcontrib>Ali, Syed Farooq</creatorcontrib><creatorcontrib>Ahmad, Jameel</creatorcontrib><creatorcontrib>Shahab, Sana</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Anjum, Mohd</creatorcontrib><creatorcontrib>Khosa, Ikramullah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perveen, Gulnaz</au><au>Ali, Syed Farooq</au><au>Ahmad, Jameel</au><au>Shahab, Sana</au><au>Adnan, Muhammad</au><au>Anjum, Mohd</au><au>Khosa, Ikramullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Micro-expression recognition has gained much attention in research communities. Among its proposed solutions, deep learning approaches have shown promising results over the past few years. In this paper, we propose a multi-stream deep convolution neural network with ensemble classification for facial micro-expression recognition. The multi-stream network uses the deep features of a residual network, densely connected convolutional network, and visual geometry group. The features of these aforementioned architectures are extracted from their pooling layers and become very resource-intensive due to their high dimensions. The principal component analysis is applied to these features for their dimensionality reduction. Stacking, an ensemble classification technique, is performed on these deep features with three base learners (random tree, J48, random forest) and a meta learner (random forest). Experiments were performed using publicly available datasets, namely: CASME-II, CASME2, SMIC, and SAMM. The proposed approach (PA) is compared with twelve approaches. The results show that the PA outperformed the existing approaches in terms of accuracy and time efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3325108</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3943-903X</orcidid><orcidid>https://orcid.org/0000-0003-4094-3786</orcidid><orcidid>https://orcid.org/0000-0001-6374-9682</orcidid><orcidid>https://orcid.org/0000-0002-9149-9358</orcidid><orcidid>https://orcid.org/0000-0003-4283-4946</orcidid><orcidid>https://orcid.org/0000-0003-0254-3351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10286498
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Classification
Computational modeling
Convolution neural network
convolution neural networks
Convolutional neural networks
Decision trees
Deep learning
Ensemble classification
Ensemble learning
Face recognition
Feature extraction
Image color analysis
Machine learning
Micro-expression recognition
Neural networks
Principal components analysis
Random forests
Stacking
title Multi-stream Deep Convolution Neural Network with Ensemble Learning for Facial Micro-expression Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-stream%20Deep%20Convolution%20Neural%20Network%20with%20Ensemble%20Learning%20for%20Facial%20Micro-expression%20Recognition&rft.jtitle=IEEE%20access&rft.au=Perveen,%20Gulnaz&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3325108&rft_dat=%3Cproquest_ieee_%3E2884893201%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884893201&rft_id=info:pmid/&rft_ieee_id=10286498&rft_doaj_id=oai_doaj_org_article_85a3ebf287be4678b69d40ba69dc12e2&rfr_iscdi=true