Actor-Critic Methods for IRS Design in Correlated Channel Environments: A Closer Look Into the Neural Tangent Kernel of the Critic
The article studies the design of an Intelligent Reflecting Surface (IRS) in order to support a Multiple-Input-Single-Output (MISO) communication system operating in a mobile, spatiotemporally correlated channel environment. The design objective is to maximize the expected sum of Signal-to-Noise Rat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2023, Vol.71, p.4029-4044 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4044 |
---|---|
container_issue | |
container_start_page | 4029 |
container_title | IEEE transactions on signal processing |
container_volume | 71 |
creator | Evmorfos, Spilios Petropulu, Athina P. Poor, H. Vincent |
description | The article studies the design of an Intelligent Reflecting Surface (IRS) in order to support a Multiple-Input-Single-Output (MISO) communication system operating in a mobile, spatiotemporally correlated channel environment. The design objective is to maximize the expected sum of Signal-to-Noise Ratio (SNR) at the receiver over an infinite time horizon. The problem formulation gives rise to a Markov Decision Process (MDP). We propose an actor-critic algorithm for continuous control that accounts for both channel correlations and destination motion by constructing the state of the Reinforcement Learning algorithm to include history of destination positions and IRS phases. To account for the variability of the underlying value function, arising due to the channel variability, we propose to pre-process the input of the critic with a Fourier kernel, which enables stability in the process of neural value approximation. We also examine the use of the destination SNR as a component of the designed MDP state, which constitutes common practice in previous works. We empirically show that, when the channels are spatiotemporally varying, including the SNR in the state representation causes divergence. We provide insight on the aforementioned divergence by demonstrating the effect of the SNR inclusion on the Neural Tangent Kernel of the critic network. Based on our study, we propose a framework for designing actor-critic methods for IRS design and also for more general problems, that is predicated upon sufficient conditions of the critic's Neural Tangent Kernel for convergence under neural value learning. |
doi_str_mv | 10.1109/TSP.2023.3322830 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10285578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10285578</ieee_id><sourcerecordid>2889728508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-835f7ba3c54b49b8a8f2a02c79dc17bbad673cdb81c4eaa6ac9765365c047be43</originalsourceid><addsrcrecordid>eNpNkElPwzAQRiMEEuudAwdLnFO8xg63KmwVZREUiVvkOJM2JbWL7SJx5ZeT0h44zUjzvm-klySnBA8IwfnF5PV5QDFlA8YoVQzvJAck5yTFXGa7_Y4FS4WS7_vJYQhzjAnneXaQ_AxNdD4tfBtbgx4gzlwdUOM8Gr28oisI7dSi1qLCeQ-djlCjYqathQ5d26_WO7sAG8MlGqKicwE8Gjv3gUY2OhRngB5h5XWHJtpOew7dg19HXfN33Hw9TvYa3QU42c6j5O3melLcpeOn21ExHKeGchFTxUQjK82M4BXPK6VVQzWmRua1IbKqdJ1JZupKEcNB60ybXGaCZcL0Cirg7Cg53_QuvftcQYjl3K287V-WVKlcUiWw6im8oYx3IXhoyqVvF9p_lwSXa9Nlb7pcmy63pvvI2SbSAsA_vC8UUrFfhzF6pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889728508</pqid></control><display><type>article</type><title>Actor-Critic Methods for IRS Design in Correlated Channel Environments: A Closer Look Into the Neural Tangent Kernel of the Critic</title><source>IEEE Electronic Library (IEL)</source><creator>Evmorfos, Spilios ; Petropulu, Athina P. ; Poor, H. Vincent</creator><creatorcontrib>Evmorfos, Spilios ; Petropulu, Athina P. ; Poor, H. Vincent</creatorcontrib><description>The article studies the design of an Intelligent Reflecting Surface (IRS) in order to support a Multiple-Input-Single-Output (MISO) communication system operating in a mobile, spatiotemporally correlated channel environment. The design objective is to maximize the expected sum of Signal-to-Noise Ratio (SNR) at the receiver over an infinite time horizon. The problem formulation gives rise to a Markov Decision Process (MDP). We propose an actor-critic algorithm for continuous control that accounts for both channel correlations and destination motion by constructing the state of the Reinforcement Learning algorithm to include history of destination positions and IRS phases. To account for the variability of the underlying value function, arising due to the channel variability, we propose to pre-process the input of the critic with a Fourier kernel, which enables stability in the process of neural value approximation. We also examine the use of the destination SNR as a component of the designed MDP state, which constitutes common practice in previous works. We empirically show that, when the channels are spatiotemporally varying, including the SNR in the state representation causes divergence. We provide insight on the aforementioned divergence by demonstrating the effect of the SNR inclusion on the Neural Tangent Kernel of the critic network. Based on our study, we propose a framework for designing actor-critic methods for IRS design and also for more general problems, that is predicated upon sufficient conditions of the critic's Neural Tangent Kernel for convergence under neural value learning.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3322830</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Communications systems ; Correlation ; Deep learning ; Divergence ; Intelligent Reflecting Surfaces ; IRS parameter design ; Kernel ; Kernels ; Machine learning ; Markov processes ; Neural Tangent Kernels ; reinforcement learning ; Signal processing algorithms ; Signal to noise ratio ; Spatiotemporal phenomena ; Supervised learning</subject><ispartof>IEEE transactions on signal processing, 2023, Vol.71, p.4029-4044</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-835f7ba3c54b49b8a8f2a02c79dc17bbad673cdb81c4eaa6ac9765365c047be43</cites><orcidid>0000-0001-7380-7815 ; 0000-0002-2062-131X ; 0000-0002-9899-4562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10285578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10285578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Evmorfos, Spilios</creatorcontrib><creatorcontrib>Petropulu, Athina P.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><title>Actor-Critic Methods for IRS Design in Correlated Channel Environments: A Closer Look Into the Neural Tangent Kernel of the Critic</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The article studies the design of an Intelligent Reflecting Surface (IRS) in order to support a Multiple-Input-Single-Output (MISO) communication system operating in a mobile, spatiotemporally correlated channel environment. The design objective is to maximize the expected sum of Signal-to-Noise Ratio (SNR) at the receiver over an infinite time horizon. The problem formulation gives rise to a Markov Decision Process (MDP). We propose an actor-critic algorithm for continuous control that accounts for both channel correlations and destination motion by constructing the state of the Reinforcement Learning algorithm to include history of destination positions and IRS phases. To account for the variability of the underlying value function, arising due to the channel variability, we propose to pre-process the input of the critic with a Fourier kernel, which enables stability in the process of neural value approximation. We also examine the use of the destination SNR as a component of the designed MDP state, which constitutes common practice in previous works. We empirically show that, when the channels are spatiotemporally varying, including the SNR in the state representation causes divergence. We provide insight on the aforementioned divergence by demonstrating the effect of the SNR inclusion on the Neural Tangent Kernel of the critic network. Based on our study, we propose a framework for designing actor-critic methods for IRS design and also for more general problems, that is predicated upon sufficient conditions of the critic's Neural Tangent Kernel for convergence under neural value learning.</description><subject>Algorithms</subject><subject>Communications systems</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Divergence</subject><subject>Intelligent Reflecting Surfaces</subject><subject>IRS parameter design</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Neural Tangent Kernels</subject><subject>reinforcement learning</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Spatiotemporal phenomena</subject><subject>Supervised learning</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkElPwzAQRiMEEuudAwdLnFO8xg63KmwVZREUiVvkOJM2JbWL7SJx5ZeT0h44zUjzvm-klySnBA8IwfnF5PV5QDFlA8YoVQzvJAck5yTFXGa7_Y4FS4WS7_vJYQhzjAnneXaQ_AxNdD4tfBtbgx4gzlwdUOM8Gr28oisI7dSi1qLCeQ-djlCjYqathQ5d26_WO7sAG8MlGqKicwE8Gjv3gUY2OhRngB5h5XWHJtpOew7dg19HXfN33Hw9TvYa3QU42c6j5O3melLcpeOn21ExHKeGchFTxUQjK82M4BXPK6VVQzWmRua1IbKqdJ1JZupKEcNB60ybXGaCZcL0Cirg7Cg53_QuvftcQYjl3K287V-WVKlcUiWw6im8oYx3IXhoyqVvF9p_lwSXa9Nlb7pcmy63pvvI2SbSAsA_vC8UUrFfhzF6pg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Evmorfos, Spilios</creator><creator>Petropulu, Athina P.</creator><creator>Poor, H. Vincent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7380-7815</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0002-9899-4562</orcidid></search><sort><creationdate>2023</creationdate><title>Actor-Critic Methods for IRS Design in Correlated Channel Environments: A Closer Look Into the Neural Tangent Kernel of the Critic</title><author>Evmorfos, Spilios ; Petropulu, Athina P. ; Poor, H. Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-835f7ba3c54b49b8a8f2a02c79dc17bbad673cdb81c4eaa6ac9765365c047be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Communications systems</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Divergence</topic><topic>Intelligent Reflecting Surfaces</topic><topic>IRS parameter design</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Neural Tangent Kernels</topic><topic>reinforcement learning</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Spatiotemporal phenomena</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evmorfos, Spilios</creatorcontrib><creatorcontrib>Petropulu, Athina P.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Evmorfos, Spilios</au><au>Petropulu, Athina P.</au><au>Poor, H. Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actor-Critic Methods for IRS Design in Correlated Channel Environments: A Closer Look Into the Neural Tangent Kernel of the Critic</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023</date><risdate>2023</risdate><volume>71</volume><spage>4029</spage><epage>4044</epage><pages>4029-4044</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The article studies the design of an Intelligent Reflecting Surface (IRS) in order to support a Multiple-Input-Single-Output (MISO) communication system operating in a mobile, spatiotemporally correlated channel environment. The design objective is to maximize the expected sum of Signal-to-Noise Ratio (SNR) at the receiver over an infinite time horizon. The problem formulation gives rise to a Markov Decision Process (MDP). We propose an actor-critic algorithm for continuous control that accounts for both channel correlations and destination motion by constructing the state of the Reinforcement Learning algorithm to include history of destination positions and IRS phases. To account for the variability of the underlying value function, arising due to the channel variability, we propose to pre-process the input of the critic with a Fourier kernel, which enables stability in the process of neural value approximation. We also examine the use of the destination SNR as a component of the designed MDP state, which constitutes common practice in previous works. We empirically show that, when the channels are spatiotemporally varying, including the SNR in the state representation causes divergence. We provide insight on the aforementioned divergence by demonstrating the effect of the SNR inclusion on the Neural Tangent Kernel of the critic network. Based on our study, we propose a framework for designing actor-critic methods for IRS design and also for more general problems, that is predicated upon sufficient conditions of the critic's Neural Tangent Kernel for convergence under neural value learning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3322830</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7380-7815</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0002-9899-4562</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2023, Vol.71, p.4029-4044 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_10285578 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Communications systems Correlation Deep learning Divergence Intelligent Reflecting Surfaces IRS parameter design Kernel Kernels Machine learning Markov processes Neural Tangent Kernels reinforcement learning Signal processing algorithms Signal to noise ratio Spatiotemporal phenomena Supervised learning |
title | Actor-Critic Methods for IRS Design in Correlated Channel Environments: A Closer Look Into the Neural Tangent Kernel of the Critic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actor-Critic%20Methods%20for%20IRS%20Design%20in%20Correlated%20Channel%20Environments:%20A%20Closer%20Look%20Into%20the%20Neural%20Tangent%20Kernel%20of%20the%20Critic&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Evmorfos,%20Spilios&rft.date=2023&rft.volume=71&rft.spage=4029&rft.epage=4044&rft.pages=4029-4044&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3322830&rft_dat=%3Cproquest_RIE%3E2889728508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889728508&rft_id=info:pmid/&rft_ieee_id=10285578&rfr_iscdi=true |