Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach

Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2024-05, Vol.15 (3), p.3288-3302
Hauptverfasser: Wang, Ruoheng, Bi, Xiaowen, Bu, Siqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3302
container_issue 3
container_start_page 3288
container_title IEEE transactions on smart grid
container_volume 15
creator Wang, Ruoheng
Bi, Xiaowen
Bu, Siqi
description Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi-graph neural network (BGNN) modeling-based deep reinforcement learning (DRL) framework for effective DNR-VVC real-time coordination featured by high-dimension decision space and complex system dynamics. Specifically, the Gumbel-softmax soft actor critic (GSSAC) algorithm is proposed to effectively decompose the vast discrete decision space resulting from numerous DNR-VVC devices. Its learning efficiency is enhanced by a proposed automated entropy annealing scheme. BGNN is then designed to fully capture both line and bus dynamics of ADNs to further boost coordination performance. Experiments are conducted on several modified ADNs to compare with various benchmarks. Results demonstrate that GSSAC-BGNN can achieve competitive performance for the secure and economic operation of ADNs with a fast decision speed and is superior in managing switching and tapping actions to benefit operators in maintenance cost reduction.
doi_str_mv 10.1109/TSG.2023.3324474
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10285128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10285128</ieee_id><sourcerecordid>3044622639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-36e0a3124d4fdc6b64020a4cfb10af40da0c72e2005bae30559647e8faac3f693</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRUNS7Bw8Bz1vzb9Out6VqFYpCrb0u0-ykRttkzaaKH8dvamqLOJeZw--9B_Oy7IzRHmO0vJw-jXqcctETgkvZl3vZEStlmQuq2P7fXYjD7LTrXmkaIYTi5VH2PUFY5lO7QjL0PjTWQbTeEW_I9ZeDldXkAeOnD29kgto7YxfrsEXANWTmlzGfVZMkdjH4JbGOVDraDyTXtovBzte_7M7jilRkFKB9yatPCIlBbJOvdcYHjSt0kYwRgrNuQaq2DR70y0l2YGDZ4eluH2fPtzfT4V0-fhzdD6txrrksYi4UUhCMy0aaRqu5kpRTkNrMGQUjaQNU9zlySos5YHpGUSrZx4EB0MKoUhxnF1vfFPu-xi7Wr34dXIqsBZVSca7EhqJbSgffdQFN3Qa7gvBVM1pvuqhTF_Wmi3rXRZKcbyUWEf_hfFAwPhA_SNqHCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044622639</pqid></control><display><type>article</type><title>Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ruoheng ; Bi, Xiaowen ; Bu, Siqi</creator><creatorcontrib>Wang, Ruoheng ; Bi, Xiaowen ; Bu, Siqi</creatorcontrib><description>Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi-graph neural network (BGNN) modeling-based deep reinforcement learning (DRL) framework for effective DNR-VVC real-time coordination featured by high-dimension decision space and complex system dynamics. Specifically, the Gumbel-softmax soft actor critic (GSSAC) algorithm is proposed to effectively decompose the vast discrete decision space resulting from numerous DNR-VVC devices. Its learning efficiency is enhanced by a proposed automated entropy annealing scheme. BGNN is then designed to fully capture both line and bus dynamics of ADNs to further boost coordination performance. Experiments are conducted on several modified ADNs to compare with various benchmarks. Results demonstrate that GSSAC-BGNN can achieve competitive performance for the secure and economic operation of ADNs with a fast decision speed and is superior in managing switching and tapping actions to benefit operators in maintenance cost reduction.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3324474</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Algorithms ; Capacitors ; Complex systems ; Coordination ; Costs ; Deep learning ; deep reinforcement learning (DRL) ; Dynamic network reconfiguration (DNR) ; graph neural network (GNN) ; Graph neural networks ; Heuristic algorithms ; Machine learning ; Maintenance costs ; Performance evaluation ; Real time ; Real-time systems ; Reconfiguration ; Regulation ; soft actor critic (SAC) ; System dynamics ; volt-VAR control (VVC) ; Voltage control</subject><ispartof>IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3288-3302</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-36e0a3124d4fdc6b64020a4cfb10af40da0c72e2005bae30559647e8faac3f693</cites><orcidid>0000-0002-1047-2568 ; 0000-0002-8865-1785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10285128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10285128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ruoheng</creatorcontrib><creatorcontrib>Bi, Xiaowen</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><title>Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi-graph neural network (BGNN) modeling-based deep reinforcement learning (DRL) framework for effective DNR-VVC real-time coordination featured by high-dimension decision space and complex system dynamics. Specifically, the Gumbel-softmax soft actor critic (GSSAC) algorithm is proposed to effectively decompose the vast discrete decision space resulting from numerous DNR-VVC devices. Its learning efficiency is enhanced by a proposed automated entropy annealing scheme. BGNN is then designed to fully capture both line and bus dynamics of ADNs to further boost coordination performance. Experiments are conducted on several modified ADNs to compare with various benchmarks. Results demonstrate that GSSAC-BGNN can achieve competitive performance for the secure and economic operation of ADNs with a fast decision speed and is superior in managing switching and tapping actions to benefit operators in maintenance cost reduction.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Capacitors</subject><subject>Complex systems</subject><subject>Coordination</subject><subject>Costs</subject><subject>Deep learning</subject><subject>deep reinforcement learning (DRL)</subject><subject>Dynamic network reconfiguration (DNR)</subject><subject>graph neural network (GNN)</subject><subject>Graph neural networks</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>Maintenance costs</subject><subject>Performance evaluation</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Reconfiguration</subject><subject>Regulation</subject><subject>soft actor critic (SAC)</subject><subject>System dynamics</subject><subject>volt-VAR control (VVC)</subject><subject>Voltage control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkU9LAzEQxRdRUNS7Bw8Bz1vzb9Out6VqFYpCrb0u0-ykRttkzaaKH8dvamqLOJeZw--9B_Oy7IzRHmO0vJw-jXqcctETgkvZl3vZEStlmQuq2P7fXYjD7LTrXmkaIYTi5VH2PUFY5lO7QjL0PjTWQbTeEW_I9ZeDldXkAeOnD29kgto7YxfrsEXANWTmlzGfVZMkdjH4JbGOVDraDyTXtovBzte_7M7jilRkFKB9yatPCIlBbJOvdcYHjSt0kYwRgrNuQaq2DR70y0l2YGDZ4eluH2fPtzfT4V0-fhzdD6txrrksYi4UUhCMy0aaRqu5kpRTkNrMGQUjaQNU9zlySos5YHpGUSrZx4EB0MKoUhxnF1vfFPu-xi7Wr34dXIqsBZVSca7EhqJbSgffdQFN3Qa7gvBVM1pvuqhTF_Wmi3rXRZKcbyUWEf_hfFAwPhA_SNqHCQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Ruoheng</creator><creator>Bi, Xiaowen</creator><creator>Bu, Siqi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0002-8865-1785</orcidid></search><sort><creationdate>20240501</creationdate><title>Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach</title><author>Wang, Ruoheng ; Bi, Xiaowen ; Bu, Siqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-36e0a3124d4fdc6b64020a4cfb10af40da0c72e2005bae30559647e8faac3f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Capacitors</topic><topic>Complex systems</topic><topic>Coordination</topic><topic>Costs</topic><topic>Deep learning</topic><topic>deep reinforcement learning (DRL)</topic><topic>Dynamic network reconfiguration (DNR)</topic><topic>graph neural network (GNN)</topic><topic>Graph neural networks</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>Maintenance costs</topic><topic>Performance evaluation</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Reconfiguration</topic><topic>Regulation</topic><topic>soft actor critic (SAC)</topic><topic>System dynamics</topic><topic>volt-VAR control (VVC)</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ruoheng</creatorcontrib><creatorcontrib>Bi, Xiaowen</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ruoheng</au><au>Bi, Xiaowen</au><au>Bu, Siqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>3288</spage><epage>3302</epage><pages>3288-3302</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi-graph neural network (BGNN) modeling-based deep reinforcement learning (DRL) framework for effective DNR-VVC real-time coordination featured by high-dimension decision space and complex system dynamics. Specifically, the Gumbel-softmax soft actor critic (GSSAC) algorithm is proposed to effectively decompose the vast discrete decision space resulting from numerous DNR-VVC devices. Its learning efficiency is enhanced by a proposed automated entropy annealing scheme. BGNN is then designed to fully capture both line and bus dynamics of ADNs to further boost coordination performance. Experiments are conducted on several modified ADNs to compare with various benchmarks. Results demonstrate that GSSAC-BGNN can achieve competitive performance for the secure and economic operation of ADNs with a fast decision speed and is superior in managing switching and tapping actions to benefit operators in maintenance cost reduction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3324474</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0002-8865-1785</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3288-3302
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_10285128
source IEEE Electronic Library (IEL)
subjects Active control
Algorithms
Capacitors
Complex systems
Coordination
Costs
Deep learning
deep reinforcement learning (DRL)
Dynamic network reconfiguration (DNR)
graph neural network (GNN)
Graph neural networks
Heuristic algorithms
Machine learning
Maintenance costs
Performance evaluation
Real time
Real-time systems
Reconfiguration
Regulation
soft actor critic (SAC)
System dynamics
volt-VAR control (VVC)
Voltage control
title Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Coordination%20of%20Dynamic%20Network%20Reconfiguration%20and%20Volt-VAR%20Control%20in%20Active%20Distribution%20Network:%20A%20Graph-Aware%20Deep%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Wang,%20Ruoheng&rft.date=2024-05-01&rft.volume=15&rft.issue=3&rft.spage=3288&rft.epage=3302&rft.pages=3288-3302&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3324474&rft_dat=%3Cproquest_RIE%3E3044622639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044622639&rft_id=info:pmid/&rft_ieee_id=10285128&rfr_iscdi=true