Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach
Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2024-05, Vol.15 (3), p.3288-3302 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3302 |
---|---|
container_issue | 3 |
container_start_page | 3288 |
container_title | IEEE transactions on smart grid |
container_volume | 15 |
creator | Wang, Ruoheng Bi, Xiaowen Bu, Siqi |
description | Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi-graph neural network (BGNN) modeling-based deep reinforcement learning (DRL) framework for effective DNR-VVC real-time coordination featured by high-dimension decision space and complex system dynamics. Specifically, the Gumbel-softmax soft actor critic (GSSAC) algorithm is proposed to effectively decompose the vast discrete decision space resulting from numerous DNR-VVC devices. Its learning efficiency is enhanced by a proposed automated entropy annealing scheme. BGNN is then designed to fully capture both line and bus dynamics of ADNs to further boost coordination performance. Experiments are conducted on several modified ADNs to compare with various benchmarks. Results demonstrate that GSSAC-BGNN can achieve competitive performance for the secure and economic operation of ADNs with a fast decision speed and is superior in managing switching and tapping actions to benefit operators in maintenance cost reduction. |
doi_str_mv | 10.1109/TSG.2023.3324474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10285128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10285128</ieee_id><sourcerecordid>3044622639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-36e0a3124d4fdc6b64020a4cfb10af40da0c72e2005bae30559647e8faac3f693</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRUNS7Bw8Bz1vzb9Out6VqFYpCrb0u0-ykRttkzaaKH8dvamqLOJeZw--9B_Oy7IzRHmO0vJw-jXqcctETgkvZl3vZEStlmQuq2P7fXYjD7LTrXmkaIYTi5VH2PUFY5lO7QjL0PjTWQbTeEW_I9ZeDldXkAeOnD29kgto7YxfrsEXANWTmlzGfVZMkdjH4JbGOVDraDyTXtovBzte_7M7jilRkFKB9yatPCIlBbJOvdcYHjSt0kYwRgrNuQaq2DR70y0l2YGDZ4eluH2fPtzfT4V0-fhzdD6txrrksYi4UUhCMy0aaRqu5kpRTkNrMGQUjaQNU9zlySos5YHpGUSrZx4EB0MKoUhxnF1vfFPu-xi7Wr34dXIqsBZVSca7EhqJbSgffdQFN3Qa7gvBVM1pvuqhTF_Wmi3rXRZKcbyUWEf_hfFAwPhA_SNqHCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044622639</pqid></control><display><type>article</type><title>Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ruoheng ; Bi, Xiaowen ; Bu, Siqi</creator><creatorcontrib>Wang, Ruoheng ; Bi, Xiaowen ; Bu, Siqi</creatorcontrib><description>Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi-graph neural network (BGNN) modeling-based deep reinforcement learning (DRL) framework for effective DNR-VVC real-time coordination featured by high-dimension decision space and complex system dynamics. Specifically, the Gumbel-softmax soft actor critic (GSSAC) algorithm is proposed to effectively decompose the vast discrete decision space resulting from numerous DNR-VVC devices. Its learning efficiency is enhanced by a proposed automated entropy annealing scheme. BGNN is then designed to fully capture both line and bus dynamics of ADNs to further boost coordination performance. Experiments are conducted on several modified ADNs to compare with various benchmarks. Results demonstrate that GSSAC-BGNN can achieve competitive performance for the secure and economic operation of ADNs with a fast decision speed and is superior in managing switching and tapping actions to benefit operators in maintenance cost reduction.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3324474</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Algorithms ; Capacitors ; Complex systems ; Coordination ; Costs ; Deep learning ; deep reinforcement learning (DRL) ; Dynamic network reconfiguration (DNR) ; graph neural network (GNN) ; Graph neural networks ; Heuristic algorithms ; Machine learning ; Maintenance costs ; Performance evaluation ; Real time ; Real-time systems ; Reconfiguration ; Regulation ; soft actor critic (SAC) ; System dynamics ; volt-VAR control (VVC) ; Voltage control</subject><ispartof>IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3288-3302</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-36e0a3124d4fdc6b64020a4cfb10af40da0c72e2005bae30559647e8faac3f693</cites><orcidid>0000-0002-1047-2568 ; 0000-0002-8865-1785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10285128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10285128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ruoheng</creatorcontrib><creatorcontrib>Bi, Xiaowen</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><title>Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi-graph neural network (BGNN) modeling-based deep reinforcement learning (DRL) framework for effective DNR-VVC real-time coordination featured by high-dimension decision space and complex system dynamics. Specifically, the Gumbel-softmax soft actor critic (GSSAC) algorithm is proposed to effectively decompose the vast discrete decision space resulting from numerous DNR-VVC devices. Its learning efficiency is enhanced by a proposed automated entropy annealing scheme. BGNN is then designed to fully capture both line and bus dynamics of ADNs to further boost coordination performance. Experiments are conducted on several modified ADNs to compare with various benchmarks. Results demonstrate that GSSAC-BGNN can achieve competitive performance for the secure and economic operation of ADNs with a fast decision speed and is superior in managing switching and tapping actions to benefit operators in maintenance cost reduction.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Capacitors</subject><subject>Complex systems</subject><subject>Coordination</subject><subject>Costs</subject><subject>Deep learning</subject><subject>deep reinforcement learning (DRL)</subject><subject>Dynamic network reconfiguration (DNR)</subject><subject>graph neural network (GNN)</subject><subject>Graph neural networks</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>Maintenance costs</subject><subject>Performance evaluation</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Reconfiguration</subject><subject>Regulation</subject><subject>soft actor critic (SAC)</subject><subject>System dynamics</subject><subject>volt-VAR control (VVC)</subject><subject>Voltage control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkU9LAzEQxRdRUNS7Bw8Bz1vzb9Out6VqFYpCrb0u0-ykRttkzaaKH8dvamqLOJeZw--9B_Oy7IzRHmO0vJw-jXqcctETgkvZl3vZEStlmQuq2P7fXYjD7LTrXmkaIYTi5VH2PUFY5lO7QjL0PjTWQbTeEW_I9ZeDldXkAeOnD29kgto7YxfrsEXANWTmlzGfVZMkdjH4JbGOVDraDyTXtovBzte_7M7jilRkFKB9yatPCIlBbJOvdcYHjSt0kYwRgrNuQaq2DR70y0l2YGDZ4eluH2fPtzfT4V0-fhzdD6txrrksYi4UUhCMy0aaRqu5kpRTkNrMGQUjaQNU9zlySos5YHpGUSrZx4EB0MKoUhxnF1vfFPu-xi7Wr34dXIqsBZVSca7EhqJbSgffdQFN3Qa7gvBVM1pvuqhTF_Wmi3rXRZKcbyUWEf_hfFAwPhA_SNqHCQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Ruoheng</creator><creator>Bi, Xiaowen</creator><creator>Bu, Siqi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0002-8865-1785</orcidid></search><sort><creationdate>20240501</creationdate><title>Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach</title><author>Wang, Ruoheng ; Bi, Xiaowen ; Bu, Siqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-36e0a3124d4fdc6b64020a4cfb10af40da0c72e2005bae30559647e8faac3f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Capacitors</topic><topic>Complex systems</topic><topic>Coordination</topic><topic>Costs</topic><topic>Deep learning</topic><topic>deep reinforcement learning (DRL)</topic><topic>Dynamic network reconfiguration (DNR)</topic><topic>graph neural network (GNN)</topic><topic>Graph neural networks</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>Maintenance costs</topic><topic>Performance evaluation</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Reconfiguration</topic><topic>Regulation</topic><topic>soft actor critic (SAC)</topic><topic>System dynamics</topic><topic>volt-VAR control (VVC)</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ruoheng</creatorcontrib><creatorcontrib>Bi, Xiaowen</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ruoheng</au><au>Bi, Xiaowen</au><au>Bu, Siqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>3288</spage><epage>3302</epage><pages>3288-3302</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Dynamic network reconfiguration (DNR) and volt-VAR control (VVC) are widely used techniques for the secure and economic operation of active distribution networks (ADNs). Their significance is rising unprecedently due to the increasing integration of renewables in ADNs. This paper hence proposes a bi-graph neural network (BGNN) modeling-based deep reinforcement learning (DRL) framework for effective DNR-VVC real-time coordination featured by high-dimension decision space and complex system dynamics. Specifically, the Gumbel-softmax soft actor critic (GSSAC) algorithm is proposed to effectively decompose the vast discrete decision space resulting from numerous DNR-VVC devices. Its learning efficiency is enhanced by a proposed automated entropy annealing scheme. BGNN is then designed to fully capture both line and bus dynamics of ADNs to further boost coordination performance. Experiments are conducted on several modified ADNs to compare with various benchmarks. Results demonstrate that GSSAC-BGNN can achieve competitive performance for the secure and economic operation of ADNs with a fast decision speed and is superior in managing switching and tapping actions to benefit operators in maintenance cost reduction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3324474</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0002-8865-1785</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3288-3302 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_10285128 |
source | IEEE Electronic Library (IEL) |
subjects | Active control Algorithms Capacitors Complex systems Coordination Costs Deep learning deep reinforcement learning (DRL) Dynamic network reconfiguration (DNR) graph neural network (GNN) Graph neural networks Heuristic algorithms Machine learning Maintenance costs Performance evaluation Real time Real-time systems Reconfiguration Regulation soft actor critic (SAC) System dynamics volt-VAR control (VVC) Voltage control |
title | Real-Time Coordination of Dynamic Network Reconfiguration and Volt-VAR Control in Active Distribution Network: A Graph-Aware Deep Reinforcement Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Coordination%20of%20Dynamic%20Network%20Reconfiguration%20and%20Volt-VAR%20Control%20in%20Active%20Distribution%20Network:%20A%20Graph-Aware%20Deep%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Wang,%20Ruoheng&rft.date=2024-05-01&rft.volume=15&rft.issue=3&rft.spage=3288&rft.epage=3302&rft.pages=3288-3302&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3324474&rft_dat=%3Cproquest_RIE%3E3044622639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044622639&rft_id=info:pmid/&rft_ieee_id=10285128&rfr_iscdi=true |