USMA-BOF: A Novel Bag-of-Features Algorithm for Classification of Infected Plant Leaf Images in Precision Agriculture

The automatic recognition and classification of infected plant leaves play an important role in precision agriculture and in helping to improve crop yields. With the advancements in the fields of artificial intelligence and computer vision, an exponential progress has been observed in their applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics & automation magazine 2023-12, Vol.30 (4), p.30-40
Hauptverfasser: Vijh, Surbhi, Gaurav, Prashant, Kumar, Sumit, Bansal, Priti, Singh, Mayank, Khan, Muhammad Attique, Palade, Vasile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 4
container_start_page 30
container_title IEEE robotics & automation magazine
container_volume 30
creator Vijh, Surbhi
Gaurav, Prashant
Kumar, Sumit
Bansal, Priti
Singh, Mayank
Khan, Muhammad Attique
Palade, Vasile
description The automatic recognition and classification of infected plant leaves play an important role in precision agriculture and in helping to improve crop yields. With the advancements in the fields of artificial intelligence and computer vision, an exponential progress has been observed in their applications to agriculture, such as in plant leaf disease detection and subsequent decision making. However, the complexity and diversity in the structural background of plant leaf images pose several challenges. This article introduces a novel bag-of-features algorithm, called Upgraded Slime mould Algorithm-Bag of Features (USMA-BOF) , for an effective classification of plant leaf images. The stochastic-based upgraded USMA is proposed to determine the optimal visual words. Further, the occurrence or repetition of optimal visual features is represented through a new discrete dual complex chirplet transform (DDCCT) method. Finally, the classification is performed using two classifiers: a support vector machine (SVM) and a multilayer perceptron (MLP). The performance of USMA is first compared with state-of-the-art algorithms on IEEE Congress on Evolutionary Computation (CEC) 2017 benchmark functions. Then, the proposed USMA-BOF algorithm is applied on a classification dataset with binary outputs for disease identification in sustainable agriculture. The MLP classifier performs better than SVM, with an average accuracy of 0.7552 using the proposed USMA-BOF algorithm, as compared to 0.7262, 0.6989, 0.6343, and 0.7262 using the algorithms whale optimization algorithm (WOA)-BOF, adaptive particle swarm optimization (APSO)-BOF, gray wolf optimization (GWO)-BOF, and SMA-BOF, respectively.
doi_str_mv 10.1109/MRA.2023.3315929
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10284566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10284566</ieee_id><sourcerecordid>2901230334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b9294da349f24a761a6e9e3ffb9f705ac2303ca70409b2daf8f444d09947c82a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrfmaz_ibVusFlpb1IK3kGaTmrLd1GRX8N-bpT14mmF43hnmAeAWoxHGiD8s3soRQYSOKMUpJ_wMDHCaFgkh9PM89ihHCeeUXIKrEHYIYVbQYgC69fuiTMbL6SMs4av70TUcy23iTDLVsu28DrCst87b9msPjfNwUssQrLFKttY10Bk4a4xWra7gqpZNC-daxtlebmPUNnDltbKhR8utt6qr-6XX4MLIOuibUx2C9fTpY_KSzJfPs0k5TxThpE028Q9WScq4IUzmGZaZ5poas-EmR6lUhCKqZI4Y4htSSVMYxliFOGe5KoikQ3B_3Hvw7rvToRU71_kmnhSEI9zHKYsUOlLKuxC8NuLg7V76X4GR6OWKKFf0csVJbozcHSNWa_0PJwVLs4z-AU59dLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901230334</pqid></control><display><type>article</type><title>USMA-BOF: A Novel Bag-of-Features Algorithm for Classification of Infected Plant Leaf Images in Precision Agriculture</title><source>IEEE Electronic Library (IEL)</source><creator>Vijh, Surbhi ; Gaurav, Prashant ; Kumar, Sumit ; Bansal, Priti ; Singh, Mayank ; Khan, Muhammad Attique ; Palade, Vasile</creator><creatorcontrib>Vijh, Surbhi ; Gaurav, Prashant ; Kumar, Sumit ; Bansal, Priti ; Singh, Mayank ; Khan, Muhammad Attique ; Palade, Vasile</creatorcontrib><description>The automatic recognition and classification of infected plant leaves play an important role in precision agriculture and in helping to improve crop yields. With the advancements in the fields of artificial intelligence and computer vision, an exponential progress has been observed in their applications to agriculture, such as in plant leaf disease detection and subsequent decision making. However, the complexity and diversity in the structural background of plant leaf images pose several challenges. This article introduces a novel bag-of-features algorithm, called Upgraded Slime mould Algorithm-Bag of Features (USMA-BOF) , for an effective classification of plant leaf images. The stochastic-based upgraded USMA is proposed to determine the optimal visual words. Further, the occurrence or repetition of optimal visual features is represented through a new discrete dual complex chirplet transform (DDCCT) method. Finally, the classification is performed using two classifiers: a support vector machine (SVM) and a multilayer perceptron (MLP). The performance of USMA is first compared with state-of-the-art algorithms on IEEE Congress on Evolutionary Computation (CEC) 2017 benchmark functions. Then, the proposed USMA-BOF algorithm is applied on a classification dataset with binary outputs for disease identification in sustainable agriculture. The MLP classifier performs better than SVM, with an average accuracy of 0.7552 using the proposed USMA-BOF algorithm, as compared to 0.7262, 0.6989, 0.6343, and 0.7262 using the algorithms whale optimization algorithm (WOA)-BOF, adaptive particle swarm optimization (APSO)-BOF, gray wolf optimization (GWO)-BOF, and SMA-BOF, respectively.</description><identifier>ISSN: 1070-9932</identifier><identifier>EISSN: 1558-223X</identifier><identifier>DOI: 10.1109/MRA.2023.3315929</identifier><identifier>CODEN: IRAMEB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Agriculture ; Algorithms ; Artificial intelligence ; Classification ; Classification algorithms ; Classifiers ; Clustering algorithms ; Complexity ; Computer vision ; Crop yield ; Crops ; Evolutionary computation ; Feature extraction ; Multilayer perceptrons ; Optimization ; Particle swarm optimization ; Plant diseases ; Plants (biology) ; Precision agriculture ; Support vector machines ; Visualization</subject><ispartof>IEEE robotics &amp; automation magazine, 2023-12, Vol.30 (4), p.30-40</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b9294da349f24a761a6e9e3ffb9f705ac2303ca70409b2daf8f444d09947c82a3</citedby><cites>FETCH-LOGICAL-c292t-b9294da349f24a761a6e9e3ffb9f705ac2303ca70409b2daf8f444d09947c82a3</cites><orcidid>0000-0002-0205-8412 ; 0009-0003-6555-9542 ; 0000-0001-7038-5944 ; 0000-0002-6768-8394 ; 0000-0002-0806-7125 ; 0000-0002-6347-4890 ; 0000-0002-8393-3652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10284566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10284566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vijh, Surbhi</creatorcontrib><creatorcontrib>Gaurav, Prashant</creatorcontrib><creatorcontrib>Kumar, Sumit</creatorcontrib><creatorcontrib>Bansal, Priti</creatorcontrib><creatorcontrib>Singh, Mayank</creatorcontrib><creatorcontrib>Khan, Muhammad Attique</creatorcontrib><creatorcontrib>Palade, Vasile</creatorcontrib><title>USMA-BOF: A Novel Bag-of-Features Algorithm for Classification of Infected Plant Leaf Images in Precision Agriculture</title><title>IEEE robotics &amp; automation magazine</title><addtitle>MRA</addtitle><description>The automatic recognition and classification of infected plant leaves play an important role in precision agriculture and in helping to improve crop yields. With the advancements in the fields of artificial intelligence and computer vision, an exponential progress has been observed in their applications to agriculture, such as in plant leaf disease detection and subsequent decision making. However, the complexity and diversity in the structural background of plant leaf images pose several challenges. This article introduces a novel bag-of-features algorithm, called Upgraded Slime mould Algorithm-Bag of Features (USMA-BOF) , for an effective classification of plant leaf images. The stochastic-based upgraded USMA is proposed to determine the optimal visual words. Further, the occurrence or repetition of optimal visual features is represented through a new discrete dual complex chirplet transform (DDCCT) method. Finally, the classification is performed using two classifiers: a support vector machine (SVM) and a multilayer perceptron (MLP). The performance of USMA is first compared with state-of-the-art algorithms on IEEE Congress on Evolutionary Computation (CEC) 2017 benchmark functions. Then, the proposed USMA-BOF algorithm is applied on a classification dataset with binary outputs for disease identification in sustainable agriculture. The MLP classifier performs better than SVM, with an average accuracy of 0.7552 using the proposed USMA-BOF algorithm, as compared to 0.7262, 0.6989, 0.6343, and 0.7262 using the algorithms whale optimization algorithm (WOA)-BOF, adaptive particle swarm optimization (APSO)-BOF, gray wolf optimization (GWO)-BOF, and SMA-BOF, respectively.</description><subject>Adaptive algorithms</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classifiers</subject><subject>Clustering algorithms</subject><subject>Complexity</subject><subject>Computer vision</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Evolutionary computation</subject><subject>Feature extraction</subject><subject>Multilayer perceptrons</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Plant diseases</subject><subject>Plants (biology)</subject><subject>Precision agriculture</subject><subject>Support vector machines</subject><subject>Visualization</subject><issn>1070-9932</issn><issn>1558-223X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrfmaz_ibVusFlpb1IK3kGaTmrLd1GRX8N-bpT14mmF43hnmAeAWoxHGiD8s3soRQYSOKMUpJ_wMDHCaFgkh9PM89ihHCeeUXIKrEHYIYVbQYgC69fuiTMbL6SMs4av70TUcy23iTDLVsu28DrCst87b9msPjfNwUssQrLFKttY10Bk4a4xWra7gqpZNC-daxtlebmPUNnDltbKhR8utt6qr-6XX4MLIOuibUx2C9fTpY_KSzJfPs0k5TxThpE028Q9WScq4IUzmGZaZ5poas-EmR6lUhCKqZI4Y4htSSVMYxliFOGe5KoikQ3B_3Hvw7rvToRU71_kmnhSEI9zHKYsUOlLKuxC8NuLg7V76X4GR6OWKKFf0csVJbozcHSNWa_0PJwVLs4z-AU59dLs</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Vijh, Surbhi</creator><creator>Gaurav, Prashant</creator><creator>Kumar, Sumit</creator><creator>Bansal, Priti</creator><creator>Singh, Mayank</creator><creator>Khan, Muhammad Attique</creator><creator>Palade, Vasile</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0205-8412</orcidid><orcidid>https://orcid.org/0009-0003-6555-9542</orcidid><orcidid>https://orcid.org/0000-0001-7038-5944</orcidid><orcidid>https://orcid.org/0000-0002-6768-8394</orcidid><orcidid>https://orcid.org/0000-0002-0806-7125</orcidid><orcidid>https://orcid.org/0000-0002-6347-4890</orcidid><orcidid>https://orcid.org/0000-0002-8393-3652</orcidid></search><sort><creationdate>202312</creationdate><title>USMA-BOF: A Novel Bag-of-Features Algorithm for Classification of Infected Plant Leaf Images in Precision Agriculture</title><author>Vijh, Surbhi ; Gaurav, Prashant ; Kumar, Sumit ; Bansal, Priti ; Singh, Mayank ; Khan, Muhammad Attique ; Palade, Vasile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b9294da349f24a761a6e9e3ffb9f705ac2303ca70409b2daf8f444d09947c82a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classifiers</topic><topic>Clustering algorithms</topic><topic>Complexity</topic><topic>Computer vision</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Evolutionary computation</topic><topic>Feature extraction</topic><topic>Multilayer perceptrons</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Plant diseases</topic><topic>Plants (biology)</topic><topic>Precision agriculture</topic><topic>Support vector machines</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijh, Surbhi</creatorcontrib><creatorcontrib>Gaurav, Prashant</creatorcontrib><creatorcontrib>Kumar, Sumit</creatorcontrib><creatorcontrib>Bansal, Priti</creatorcontrib><creatorcontrib>Singh, Mayank</creatorcontrib><creatorcontrib>Khan, Muhammad Attique</creatorcontrib><creatorcontrib>Palade, Vasile</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE robotics &amp; automation magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vijh, Surbhi</au><au>Gaurav, Prashant</au><au>Kumar, Sumit</au><au>Bansal, Priti</au><au>Singh, Mayank</au><au>Khan, Muhammad Attique</au><au>Palade, Vasile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>USMA-BOF: A Novel Bag-of-Features Algorithm for Classification of Infected Plant Leaf Images in Precision Agriculture</atitle><jtitle>IEEE robotics &amp; automation magazine</jtitle><stitle>MRA</stitle><date>2023-12</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>30</spage><epage>40</epage><pages>30-40</pages><issn>1070-9932</issn><eissn>1558-223X</eissn><coden>IRAMEB</coden><abstract>The automatic recognition and classification of infected plant leaves play an important role in precision agriculture and in helping to improve crop yields. With the advancements in the fields of artificial intelligence and computer vision, an exponential progress has been observed in their applications to agriculture, such as in plant leaf disease detection and subsequent decision making. However, the complexity and diversity in the structural background of plant leaf images pose several challenges. This article introduces a novel bag-of-features algorithm, called Upgraded Slime mould Algorithm-Bag of Features (USMA-BOF) , for an effective classification of plant leaf images. The stochastic-based upgraded USMA is proposed to determine the optimal visual words. Further, the occurrence or repetition of optimal visual features is represented through a new discrete dual complex chirplet transform (DDCCT) method. Finally, the classification is performed using two classifiers: a support vector machine (SVM) and a multilayer perceptron (MLP). The performance of USMA is first compared with state-of-the-art algorithms on IEEE Congress on Evolutionary Computation (CEC) 2017 benchmark functions. Then, the proposed USMA-BOF algorithm is applied on a classification dataset with binary outputs for disease identification in sustainable agriculture. The MLP classifier performs better than SVM, with an average accuracy of 0.7552 using the proposed USMA-BOF algorithm, as compared to 0.7262, 0.6989, 0.6343, and 0.7262 using the algorithms whale optimization algorithm (WOA)-BOF, adaptive particle swarm optimization (APSO)-BOF, gray wolf optimization (GWO)-BOF, and SMA-BOF, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MRA.2023.3315929</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0205-8412</orcidid><orcidid>https://orcid.org/0009-0003-6555-9542</orcidid><orcidid>https://orcid.org/0000-0001-7038-5944</orcidid><orcidid>https://orcid.org/0000-0002-6768-8394</orcidid><orcidid>https://orcid.org/0000-0002-0806-7125</orcidid><orcidid>https://orcid.org/0000-0002-6347-4890</orcidid><orcidid>https://orcid.org/0000-0002-8393-3652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9932
ispartof IEEE robotics & automation magazine, 2023-12, Vol.30 (4), p.30-40
issn 1070-9932
1558-223X
language eng
recordid cdi_ieee_primary_10284566
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Agriculture
Algorithms
Artificial intelligence
Classification
Classification algorithms
Classifiers
Clustering algorithms
Complexity
Computer vision
Crop yield
Crops
Evolutionary computation
Feature extraction
Multilayer perceptrons
Optimization
Particle swarm optimization
Plant diseases
Plants (biology)
Precision agriculture
Support vector machines
Visualization
title USMA-BOF: A Novel Bag-of-Features Algorithm for Classification of Infected Plant Leaf Images in Precision Agriculture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=USMA-BOF:%20A%20Novel%20Bag-of-Features%20Algorithm%20for%20Classification%20of%20Infected%20Plant%20Leaf%20Images%20in%20Precision%20Agriculture&rft.jtitle=IEEE%20robotics%20&%20automation%20magazine&rft.au=Vijh,%20Surbhi&rft.date=2023-12&rft.volume=30&rft.issue=4&rft.spage=30&rft.epage=40&rft.pages=30-40&rft.issn=1070-9932&rft.eissn=1558-223X&rft.coden=IRAMEB&rft_id=info:doi/10.1109/MRA.2023.3315929&rft_dat=%3Cproquest_RIE%3E2901230334%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901230334&rft_id=info:pmid/&rft_ieee_id=10284566&rfr_iscdi=true