An efficient approach to highly non-linear estimation

This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques the proposed recursive algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ruiz, V.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740 vol.2
container_issue
container_start_page 737
container_title
container_volume 2
creator Ruiz, V.F.
description This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes' theorem. Through simulation on a generic exponential model, the proposed nonlinear filter proves to be superior to the extended Kalman filter and a class of nonlinear filters based on the partitioning algorithm.
doi_str_mv 10.1109/ICDSP.2002.1028196
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1028196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1028196</ieee_id><sourcerecordid>1028196</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6a8a6fee2edf81b6e6b8a45024f386f7a9e3cce41461c0fcf1d3f4f502f365323</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0JL6B9qNfsCurt5eBvcVCKTQZB0U5d5axZWN7U3-voZmGJjNYYZh7BFEBSDq503z8vVZSSFkBUJ6qO0NK2rnxWLljFBwx4pp-hGLtNHeuXtm1pkjUYoJ88zDMIx9iC2fe96m77a78NznsksZw8hxmtNvmFOfH9gthW7C4pordnh73Tcf5Xb3vmnW2zKBM3Npgw-WECWeycPJoj35oI2QmpS35EKNKkbUoC1EQZHgrEjTApCyRkm1Yk__vQkRj8O4zI-X4_Wc-gNgskUD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient approach to highly non-linear estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruiz, V.F.</creator><creatorcontrib>Ruiz, V.F.</creatorcontrib><description>This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes' theorem. Through simulation on a generic exponential model, the proposed nonlinear filter proves to be superior to the extended Kalman filter and a class of nonlinear filters based on the partitioning algorithm.</description><identifier>ISBN: 9780780375031</identifier><identifier>ISBN: 0780375033</identifier><identifier>DOI: 10.1109/ICDSP.2002.1028196</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Density functional theory ; Distributed computing ; Entropy ; Filtering ; Lagrangian functions ; Least squares approximation ; Nonlinear equations ; Partitioning algorithms ; Probability distribution</subject><ispartof>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), 2002, Vol.2, p.737-740 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1028196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1028196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruiz, V.F.</creatorcontrib><title>An efficient approach to highly non-linear estimation</title><title>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)</title><addtitle>ICDSP</addtitle><description>This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes' theorem. Through simulation on a generic exponential model, the proposed nonlinear filter proves to be superior to the extended Kalman filter and a class of nonlinear filters based on the partitioning algorithm.</description><subject>Adaptive filters</subject><subject>Density functional theory</subject><subject>Distributed computing</subject><subject>Entropy</subject><subject>Filtering</subject><subject>Lagrangian functions</subject><subject>Least squares approximation</subject><subject>Nonlinear equations</subject><subject>Partitioning algorithms</subject><subject>Probability distribution</subject><isbn>9780780375031</isbn><isbn>0780375033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWl0JL6B9qNfsCurt5eBvcVCKTQZB0U5d5axZWN7U3-voZmGJjNYYZh7BFEBSDq503z8vVZSSFkBUJ6qO0NK2rnxWLljFBwx4pp-hGLtNHeuXtm1pkjUYoJ88zDMIx9iC2fe96m77a78NznsksZw8hxmtNvmFOfH9gthW7C4pordnh73Tcf5Xb3vmnW2zKBM3Npgw-WECWeycPJoj35oI2QmpS35EKNKkbUoC1EQZHgrEjTApCyRkm1Yk__vQkRj8O4zI-X4_Wc-gNgskUD</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Ruiz, V.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>An efficient approach to highly non-linear estimation</title><author>Ruiz, V.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6a8a6fee2edf81b6e6b8a45024f386f7a9e3cce41461c0fcf1d3f4f502f365323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptive filters</topic><topic>Density functional theory</topic><topic>Distributed computing</topic><topic>Entropy</topic><topic>Filtering</topic><topic>Lagrangian functions</topic><topic>Least squares approximation</topic><topic>Nonlinear equations</topic><topic>Partitioning algorithms</topic><topic>Probability distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruiz, V.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruiz, V.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient approach to highly non-linear estimation</atitle><btitle>2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)</btitle><stitle>ICDSP</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>737</spage><epage>740 vol.2</epage><pages>737-740 vol.2</pages><isbn>9780780375031</isbn><isbn>0780375033</isbn><abstract>This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes' theorem. Through simulation on a generic exponential model, the proposed nonlinear filter proves to be superior to the extended Kalman filter and a class of nonlinear filters based on the partitioning algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2002.1028196</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780375031
ispartof 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628), 2002, Vol.2, p.737-740 vol.2
issn
language eng
recordid cdi_ieee_primary_1028196
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive filters
Density functional theory
Distributed computing
Entropy
Filtering
Lagrangian functions
Least squares approximation
Nonlinear equations
Partitioning algorithms
Probability distribution
title An efficient approach to highly non-linear estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20approach%20to%20highly%20non-linear%20estimation&rft.btitle=2002%2014th%20International%20Conference%20on%20Digital%20Signal%20Processing%20Proceedings.%20DSP%202002%20(Cat.%20No.02TH8628)&rft.au=Ruiz,%20V.F.&rft.date=2002&rft.volume=2&rft.spage=737&rft.epage=740%20vol.2&rft.pages=737-740%20vol.2&rft.isbn=9780780375031&rft.isbn_list=0780375033&rft_id=info:doi/10.1109/ICDSP.2002.1028196&rft_dat=%3Cieee_6IE%3E1028196%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1028196&rfr_iscdi=true