Lower bounds on the quantum capacity and highest error exponent of general memoryless channels

Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2002-09, Vol.48 (9), p.2547-2557
1. Verfasser: Hamada, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2557
container_issue 9
container_start_page 2547
container_title IEEE transactions on information theory
container_volume 48
creator Hamada, M.
description Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length n and rate R is proven to be lower-bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R/sub 0/, a direct consequence of which is that R/sub 0/ is a lower bound on the quantum capacity. This is an extension of the author's earlier result. While the earlier work states the result for the depolarizing channel and a slight generalization of it (Pauli channels), the result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution.
doi_str_mv 10.1109/TIT.2002.801470
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1027783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1027783</ieee_id><sourcerecordid>173577491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-1c0ee724772bb7ec6f5318783a00ee4bbdab12797aac5746d132b5384627603</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUwM7BYDGxpbceOnRFVfEmVGOiM5bjXJlVip3Yi6L_HVRkQ0-l0z3u6exC6pWRGKSnnq7fVjBHCZopQLskZmlAhZFYWgp-jCSFUZSXn6hJdxbhLLReUTdDn0n9BwJUf3Tpi7_BQA96Pxg1jh63pjW2GAzZujetmW0McMITgA4bv3jtwA_YbvAUHwbS4g86HQwsxYlsb56CN1-hiY9oIN791ij6en1aL12z5_vK2eFxmljM-ZNQSAMm4lKyqJNhiI3KqpMoNSQNeVWtTUSZLaYwVkhdrmrNK5IoXTBYkn6KH09Y--P2YjtRdEy20rXHgx6iZyoUSVCTw_h-482Nw6TJNS6GkEAVP0PwE2eBjDLDRfWg6Ew6aEn1UrZNqfVStT6pT4u6UaADgD81keiH_Adtgenc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195875564</pqid></control><display><type>article</type><title>Lower bounds on the quantum capacity and highest error exponent of general memoryless channels</title><source>IEEE Electronic Library (IEL)</source><creator>Hamada, M.</creator><creatorcontrib>Hamada, M.</creatorcontrib><description>Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length n and rate R is proven to be lower-bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R/sub 0/, a direct consequence of which is that R/sub 0/ is a lower bound on the quantum capacity. This is an extension of the author's earlier result. While the earlier work states the result for the depolarizing channel and a slight generalization of it (Pauli channels), the result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.801470</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Error correction coding ; Errors ; Geometry ; Information rates ; Mathematical models ; Memoryless systems ; Quantum theory</subject><ispartof>IEEE transactions on information theory, 2002-09, Vol.48 (9), p.2547-2557</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-1c0ee724772bb7ec6f5318783a00ee4bbdab12797aac5746d132b5384627603</citedby><cites>FETCH-LOGICAL-c424t-1c0ee724772bb7ec6f5318783a00ee4bbdab12797aac5746d132b5384627603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1027783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1027783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamada, M.</creatorcontrib><title>Lower bounds on the quantum capacity and highest error exponent of general memoryless channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length n and rate R is proven to be lower-bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R/sub 0/, a direct consequence of which is that R/sub 0/ is a lower bound on the quantum capacity. This is an extension of the author's earlier result. While the earlier work states the result for the depolarizing channel and a slight generalization of it (Pauli channels), the result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution.</description><subject>Codes</subject><subject>Error correction coding</subject><subject>Errors</subject><subject>Geometry</subject><subject>Information rates</subject><subject>Mathematical models</subject><subject>Memoryless systems</subject><subject>Quantum theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqUwM7BYDGxpbceOnRFVfEmVGOiM5bjXJlVip3Yi6L_HVRkQ0-l0z3u6exC6pWRGKSnnq7fVjBHCZopQLskZmlAhZFYWgp-jCSFUZSXn6hJdxbhLLReUTdDn0n9BwJUf3Tpi7_BQA96Pxg1jh63pjW2GAzZujetmW0McMITgA4bv3jtwA_YbvAUHwbS4g86HQwsxYlsb56CN1-hiY9oIN791ij6en1aL12z5_vK2eFxmljM-ZNQSAMm4lKyqJNhiI3KqpMoNSQNeVWtTUSZLaYwVkhdrmrNK5IoXTBYkn6KH09Y--P2YjtRdEy20rXHgx6iZyoUSVCTw_h-482Nw6TJNS6GkEAVP0PwE2eBjDLDRfWg6Ew6aEn1UrZNqfVStT6pT4u6UaADgD81keiH_Adtgenc</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Hamada, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200209</creationdate><title>Lower bounds on the quantum capacity and highest error exponent of general memoryless channels</title><author>Hamada, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-1c0ee724772bb7ec6f5318783a00ee4bbdab12797aac5746d132b5384627603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Codes</topic><topic>Error correction coding</topic><topic>Errors</topic><topic>Geometry</topic><topic>Information rates</topic><topic>Mathematical models</topic><topic>Memoryless systems</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamada, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamada, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds on the quantum capacity and highest error exponent of general memoryless channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2002-09</date><risdate>2002</risdate><volume>48</volume><issue>9</issue><spage>2547</spage><epage>2557</epage><pages>2547-2557</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length n and rate R is proven to be lower-bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R/sub 0/, a direct consequence of which is that R/sub 0/ is a lower bound on the quantum capacity. This is an extension of the author's earlier result. While the earlier work states the result for the depolarizing channel and a slight generalization of it (Pauli channels), the result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.801470</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2002-09, Vol.48 (9), p.2547-2557
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_1027783
source IEEE Electronic Library (IEL)
subjects Codes
Error correction coding
Errors
Geometry
Information rates
Mathematical models
Memoryless systems
Quantum theory
title Lower bounds on the quantum capacity and highest error exponent of general memoryless channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20on%20the%20quantum%20capacity%20and%20highest%20error%20exponent%20of%20general%20memoryless%20channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Hamada,%20M.&rft.date=2002-09&rft.volume=48&rft.issue=9&rft.spage=2547&rft.epage=2557&rft.pages=2547-2557&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.801470&rft_dat=%3Cproquest_RIE%3E173577491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195875564&rft_id=info:pmid/&rft_ieee_id=1027783&rfr_iscdi=true