Lower bounds on the quantum capacity and highest error exponent of general memoryless channels
Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underly...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2002-09, Vol.48 (9), p.2547-2557 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2557 |
---|---|
container_issue | 9 |
container_start_page | 2547 |
container_title | IEEE transactions on information theory |
container_volume | 48 |
creator | Hamada, M. |
description | Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length n and rate R is proven to be lower-bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R/sub 0/, a direct consequence of which is that R/sub 0/ is a lower bound on the quantum capacity. This is an extension of the author's earlier result. While the earlier work states the result for the depolarizing channel and a slight generalization of it (Pauli channels), the result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution. |
doi_str_mv | 10.1109/TIT.2002.801470 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1027783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1027783</ieee_id><sourcerecordid>173577491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-1c0ee724772bb7ec6f5318783a00ee4bbdab12797aac5746d132b5384627603</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUwM7BYDGxpbceOnRFVfEmVGOiM5bjXJlVip3Yi6L_HVRkQ0-l0z3u6exC6pWRGKSnnq7fVjBHCZopQLskZmlAhZFYWgp-jCSFUZSXn6hJdxbhLLReUTdDn0n9BwJUf3Tpi7_BQA96Pxg1jh63pjW2GAzZujetmW0McMITgA4bv3jtwA_YbvAUHwbS4g86HQwsxYlsb56CN1-hiY9oIN791ij6en1aL12z5_vK2eFxmljM-ZNQSAMm4lKyqJNhiI3KqpMoNSQNeVWtTUSZLaYwVkhdrmrNK5IoXTBYkn6KH09Y--P2YjtRdEy20rXHgx6iZyoUSVCTw_h-482Nw6TJNS6GkEAVP0PwE2eBjDLDRfWg6Ew6aEn1UrZNqfVStT6pT4u6UaADgD81keiH_Adtgenc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195875564</pqid></control><display><type>article</type><title>Lower bounds on the quantum capacity and highest error exponent of general memoryless channels</title><source>IEEE Electronic Library (IEL)</source><creator>Hamada, M.</creator><creatorcontrib>Hamada, M.</creatorcontrib><description>Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length n and rate R is proven to be lower-bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R/sub 0/, a direct consequence of which is that R/sub 0/ is a lower bound on the quantum capacity. This is an extension of the author's earlier result. While the earlier work states the result for the depolarizing channel and a slight generalization of it (Pauli channels), the result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.801470</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Error correction coding ; Errors ; Geometry ; Information rates ; Mathematical models ; Memoryless systems ; Quantum theory</subject><ispartof>IEEE transactions on information theory, 2002-09, Vol.48 (9), p.2547-2557</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-1c0ee724772bb7ec6f5318783a00ee4bbdab12797aac5746d132b5384627603</citedby><cites>FETCH-LOGICAL-c424t-1c0ee724772bb7ec6f5318783a00ee4bbdab12797aac5746d132b5384627603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1027783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1027783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamada, M.</creatorcontrib><title>Lower bounds on the quantum capacity and highest error exponent of general memoryless channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length n and rate R is proven to be lower-bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R/sub 0/, a direct consequence of which is that R/sub 0/ is a lower bound on the quantum capacity. This is an extension of the author's earlier result. While the earlier work states the result for the depolarizing channel and a slight generalization of it (Pauli channels), the result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution.</description><subject>Codes</subject><subject>Error correction coding</subject><subject>Errors</subject><subject>Geometry</subject><subject>Information rates</subject><subject>Mathematical models</subject><subject>Memoryless systems</subject><subject>Quantum theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqUwM7BYDGxpbceOnRFVfEmVGOiM5bjXJlVip3Yi6L_HVRkQ0-l0z3u6exC6pWRGKSnnq7fVjBHCZopQLskZmlAhZFYWgp-jCSFUZSXn6hJdxbhLLReUTdDn0n9BwJUf3Tpi7_BQA96Pxg1jh63pjW2GAzZujetmW0McMITgA4bv3jtwA_YbvAUHwbS4g86HQwsxYlsb56CN1-hiY9oIN791ij6en1aL12z5_vK2eFxmljM-ZNQSAMm4lKyqJNhiI3KqpMoNSQNeVWtTUSZLaYwVkhdrmrNK5IoXTBYkn6KH09Y--P2YjtRdEy20rXHgx6iZyoUSVCTw_h-482Nw6TJNS6GkEAVP0PwE2eBjDLDRfWg6Ew6aEn1UrZNqfVStT6pT4u6UaADgD81keiH_Adtgenc</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Hamada, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200209</creationdate><title>Lower bounds on the quantum capacity and highest error exponent of general memoryless channels</title><author>Hamada, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-1c0ee724772bb7ec6f5318783a00ee4bbdab12797aac5746d132b5384627603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Codes</topic><topic>Error correction coding</topic><topic>Errors</topic><topic>Geometry</topic><topic>Information rates</topic><topic>Mathematical models</topic><topic>Memoryless systems</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamada, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamada, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds on the quantum capacity and highest error exponent of general memoryless channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2002-09</date><risdate>2002</risdate><volume>48</volume><issue>9</issue><spage>2547</spage><epage>2557</epage><pages>2547-2557</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive (CP) linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length n and rate R is proven to be lower-bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R/sub 0/, a direct consequence of which is that R/sub 0/ is a lower bound on the quantum capacity. This is an extension of the author's earlier result. While the earlier work states the result for the depolarizing channel and a slight generalization of it (Pauli channels), the result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.801470</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2002-09, Vol.48 (9), p.2547-2557 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_1027783 |
source | IEEE Electronic Library (IEL) |
subjects | Codes Error correction coding Errors Geometry Information rates Mathematical models Memoryless systems Quantum theory |
title | Lower bounds on the quantum capacity and highest error exponent of general memoryless channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20on%20the%20quantum%20capacity%20and%20highest%20error%20exponent%20of%20general%20memoryless%20channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Hamada,%20M.&rft.date=2002-09&rft.volume=48&rft.issue=9&rft.spage=2547&rft.epage=2557&rft.pages=2547-2557&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.801470&rft_dat=%3Cproquest_RIE%3E173577491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195875564&rft_id=info:pmid/&rft_ieee_id=1027783&rfr_iscdi=true |