Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge
High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to prog...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2024-02, Vol.32 (2), p.283-290 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 2 |
container_start_page | 283 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 32 |
creator | An, Junjie Zhou, Zhidao Wang, Linfang Ye, Wang Li, Weizeng Gao, Hanghang Li, Zhi Tian, Jinghui Wang, Yan Hu, Hongyang Yue, Jinshan Fan, Lingyan Long, Shibing Liu, Qi Dou, Chunmeng |
description | High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to program the RRAM cell, which causes high power consumption, long latency, and degradation on the memory lifetime. To address this issue, we propose a write-verify-free MLC RRAM macro for weight storage with 1) a cascode-current-mirror multibit write (CCM-MW) driver and 2) a nonbinary programming scheme (NB-PS) with a radix not greater than 2. A 180-nm 400-Kb RRAM test chip is demonstrated in silicon. For 2-bit-per-cell MLC storage, the value error rates can be reduced by 24.13% after introducing two redundant bits (RBDs). In addition, compared to the single-level cell (SLC) storage scheme, a 37.50% reduction in the number of cells can be achieved to store the ResNet-8 model with a 0.79% loss in inference accuracy without the need for WAV iterations. |
doi_str_mv | 10.1109/TVLSI.2023.3318744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10275806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10275806</ieee_id><sourcerecordid>2918029314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-40d76fad3550e02e1c6ba11001d3eead907e1d7d972091dd04da526146fabd1a3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYp40fieFlVBSqlIPW5tNx4kqaCpDjpon-PS7tgNjMa3Tujewh5ZDBgDPTLYpXNJwMOXAyEYKmS8or0WByrSIe6DjMkIko5g1ty17Y7ACalhh5Zrn3VYbRCXxXH6NUj0mk2orPZcEqXbVWX9KOpN1Vt_ZGO67xxp1XReDqc0DVW5baj867xtkRqO9ptkY5diffkprBfLT5cep8sX8eL0XuUfb5NRsMsyrlUXSTBqaSwTsQxIHBkebKxIQ8wJxCt06CQOeW04qCZcyCdjXnCZDBtHLOiT57Pd_e--Tlg25ldc_B1eGm4ZilwLZgMKn5W5b5pW4-F2fvqOyQyDMwJn_nDZ074zAVfMD2dTRUi_jNwFaeB5S-7HWof</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918029314</pqid></control><display><type>article</type><title>Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge</title><source>IEEE Electronic Library (IEL)</source><creator>An, Junjie ; Zhou, Zhidao ; Wang, Linfang ; Ye, Wang ; Li, Weizeng ; Gao, Hanghang ; Li, Zhi ; Tian, Jinghui ; Wang, Yan ; Hu, Hongyang ; Yue, Jinshan ; Fan, Lingyan ; Long, Shibing ; Liu, Qi ; Dou, Chunmeng</creator><creatorcontrib>An, Junjie ; Zhou, Zhidao ; Wang, Linfang ; Ye, Wang ; Li, Weizeng ; Gao, Hanghang ; Li, Zhi ; Tian, Jinghui ; Wang, Yan ; Hu, Hongyang ; Yue, Jinshan ; Fan, Lingyan ; Long, Shibing ; Liu, Qi ; Dou, Chunmeng</creatorcontrib><description>High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to program the RRAM cell, which causes high power consumption, long latency, and degradation on the memory lifetime. To address this issue, we propose a write-verify-free MLC RRAM macro for weight storage with 1) a cascode-current-mirror multibit write (CCM-MW) driver and 2) a nonbinary programming scheme (NB-PS) with a radix not greater than 2. A 180-nm 400-Kb RRAM test chip is demonstrated in silicon. For 2-bit-per-cell MLC storage, the value error rates can be reduced by 24.13% after introducing two redundant bits (RBDs). In addition, compared to the single-level cell (SLC) storage scheme, a 37.50% reduction in the number of cells can be achieved to store the ResNet-8 model with a 0.79% loss in inference accuracy without the need for WAV iterations.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2023.3318744</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Circuit synthesis ; Edge AI ; Encoding ; Multilevel cell (MLC) ; Nonvolatile memory ; nonvolatile memory (NVM) ; Power consumption ; programming schemes ; Random access memory ; Resistive RAM ; resistive random access memory (RRAM)</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2024-02, Vol.32 (2), p.283-290</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-40d76fad3550e02e1c6ba11001d3eead907e1d7d972091dd04da526146fabd1a3</cites><orcidid>0000-0003-2192-9655 ; 0000-0003-2291-9598 ; 0000-0002-1400-4040 ; 0000-0002-1259-6310 ; 0009-0008-4893-7907 ; 0000-0002-7636-0227 ; 0000-0001-7062-831X ; 0000-0001-8234-7400 ; 0000-0001-6220-4461 ; 0000-0002-3740-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10275806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10275806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>An, Junjie</creatorcontrib><creatorcontrib>Zhou, Zhidao</creatorcontrib><creatorcontrib>Wang, Linfang</creatorcontrib><creatorcontrib>Ye, Wang</creatorcontrib><creatorcontrib>Li, Weizeng</creatorcontrib><creatorcontrib>Gao, Hanghang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Tian, Jinghui</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Hu, Hongyang</creatorcontrib><creatorcontrib>Yue, Jinshan</creatorcontrib><creatorcontrib>Fan, Lingyan</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Dou, Chunmeng</creatorcontrib><title>Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to program the RRAM cell, which causes high power consumption, long latency, and degradation on the memory lifetime. To address this issue, we propose a write-verify-free MLC RRAM macro for weight storage with 1) a cascode-current-mirror multibit write (CCM-MW) driver and 2) a nonbinary programming scheme (NB-PS) with a radix not greater than 2. A 180-nm 400-Kb RRAM test chip is demonstrated in silicon. For 2-bit-per-cell MLC storage, the value error rates can be reduced by 24.13% after introducing two redundant bits (RBDs). In addition, compared to the single-level cell (SLC) storage scheme, a 37.50% reduction in the number of cells can be achieved to store the ResNet-8 model with a 0.79% loss in inference accuracy without the need for WAV iterations.</description><subject>Artificial intelligence</subject><subject>Circuit synthesis</subject><subject>Edge AI</subject><subject>Encoding</subject><subject>Multilevel cell (MLC)</subject><subject>Nonvolatile memory</subject><subject>nonvolatile memory (NVM)</subject><subject>Power consumption</subject><subject>programming schemes</subject><subject>Random access memory</subject><subject>Resistive RAM</subject><subject>resistive random access memory (RRAM)</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYp40fieFlVBSqlIPW5tNx4kqaCpDjpon-PS7tgNjMa3Tujewh5ZDBgDPTLYpXNJwMOXAyEYKmS8or0WByrSIe6DjMkIko5g1ty17Y7ACalhh5Zrn3VYbRCXxXH6NUj0mk2orPZcEqXbVWX9KOpN1Vt_ZGO67xxp1XReDqc0DVW5baj867xtkRqO9ptkY5diffkprBfLT5cep8sX8eL0XuUfb5NRsMsyrlUXSTBqaSwTsQxIHBkebKxIQ8wJxCt06CQOeW04qCZcyCdjXnCZDBtHLOiT57Pd_e--Tlg25ldc_B1eGm4ZilwLZgMKn5W5b5pW4-F2fvqOyQyDMwJn_nDZ074zAVfMD2dTRUi_jNwFaeB5S-7HWof</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>An, Junjie</creator><creator>Zhou, Zhidao</creator><creator>Wang, Linfang</creator><creator>Ye, Wang</creator><creator>Li, Weizeng</creator><creator>Gao, Hanghang</creator><creator>Li, Zhi</creator><creator>Tian, Jinghui</creator><creator>Wang, Yan</creator><creator>Hu, Hongyang</creator><creator>Yue, Jinshan</creator><creator>Fan, Lingyan</creator><creator>Long, Shibing</creator><creator>Liu, Qi</creator><creator>Dou, Chunmeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2192-9655</orcidid><orcidid>https://orcid.org/0000-0003-2291-9598</orcidid><orcidid>https://orcid.org/0000-0002-1400-4040</orcidid><orcidid>https://orcid.org/0000-0002-1259-6310</orcidid><orcidid>https://orcid.org/0009-0008-4893-7907</orcidid><orcidid>https://orcid.org/0000-0002-7636-0227</orcidid><orcidid>https://orcid.org/0000-0001-7062-831X</orcidid><orcidid>https://orcid.org/0000-0001-8234-7400</orcidid><orcidid>https://orcid.org/0000-0001-6220-4461</orcidid><orcidid>https://orcid.org/0000-0002-3740-9868</orcidid></search><sort><creationdate>20240201</creationdate><title>Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge</title><author>An, Junjie ; Zhou, Zhidao ; Wang, Linfang ; Ye, Wang ; Li, Weizeng ; Gao, Hanghang ; Li, Zhi ; Tian, Jinghui ; Wang, Yan ; Hu, Hongyang ; Yue, Jinshan ; Fan, Lingyan ; Long, Shibing ; Liu, Qi ; Dou, Chunmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-40d76fad3550e02e1c6ba11001d3eead907e1d7d972091dd04da526146fabd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Circuit synthesis</topic><topic>Edge AI</topic><topic>Encoding</topic><topic>Multilevel cell (MLC)</topic><topic>Nonvolatile memory</topic><topic>nonvolatile memory (NVM)</topic><topic>Power consumption</topic><topic>programming schemes</topic><topic>Random access memory</topic><topic>Resistive RAM</topic><topic>resistive random access memory (RRAM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Junjie</creatorcontrib><creatorcontrib>Zhou, Zhidao</creatorcontrib><creatorcontrib>Wang, Linfang</creatorcontrib><creatorcontrib>Ye, Wang</creatorcontrib><creatorcontrib>Li, Weizeng</creatorcontrib><creatorcontrib>Gao, Hanghang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Tian, Jinghui</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Hu, Hongyang</creatorcontrib><creatorcontrib>Yue, Jinshan</creatorcontrib><creatorcontrib>Fan, Lingyan</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Dou, Chunmeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>An, Junjie</au><au>Zhou, Zhidao</au><au>Wang, Linfang</au><au>Ye, Wang</au><au>Li, Weizeng</au><au>Gao, Hanghang</au><au>Li, Zhi</au><au>Tian, Jinghui</au><au>Wang, Yan</au><au>Hu, Hongyang</au><au>Yue, Jinshan</au><au>Fan, Lingyan</au><au>Long, Shibing</au><au>Liu, Qi</au><au>Dou, Chunmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>32</volume><issue>2</issue><spage>283</spage><epage>290</epage><pages>283-290</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to program the RRAM cell, which causes high power consumption, long latency, and degradation on the memory lifetime. To address this issue, we propose a write-verify-free MLC RRAM macro for weight storage with 1) a cascode-current-mirror multibit write (CCM-MW) driver and 2) a nonbinary programming scheme (NB-PS) with a radix not greater than 2. A 180-nm 400-Kb RRAM test chip is demonstrated in silicon. For 2-bit-per-cell MLC storage, the value error rates can be reduced by 24.13% after introducing two redundant bits (RBDs). In addition, compared to the single-level cell (SLC) storage scheme, a 37.50% reduction in the number of cells can be achieved to store the ResNet-8 model with a 0.79% loss in inference accuracy without the need for WAV iterations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2023.3318744</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2192-9655</orcidid><orcidid>https://orcid.org/0000-0003-2291-9598</orcidid><orcidid>https://orcid.org/0000-0002-1400-4040</orcidid><orcidid>https://orcid.org/0000-0002-1259-6310</orcidid><orcidid>https://orcid.org/0009-0008-4893-7907</orcidid><orcidid>https://orcid.org/0000-0002-7636-0227</orcidid><orcidid>https://orcid.org/0000-0001-7062-831X</orcidid><orcidid>https://orcid.org/0000-0001-8234-7400</orcidid><orcidid>https://orcid.org/0000-0001-6220-4461</orcidid><orcidid>https://orcid.org/0000-0002-3740-9868</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2024-02, Vol.32 (2), p.283-290 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_ieee_primary_10275806 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Circuit synthesis Edge AI Encoding Multilevel cell (MLC) Nonvolatile memory nonvolatile memory (NVM) Power consumption programming schemes Random access memory Resistive RAM resistive random access memory (RRAM) |
title | Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Write-Verify-Free%20MLC%20RRAM%20Using%20Nonbinary%20Encoding%20for%20AI%20Weight%20Storage%20at%20the%20Edge&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=An,%20Junjie&rft.date=2024-02-01&rft.volume=32&rft.issue=2&rft.spage=283&rft.epage=290&rft.pages=283-290&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2023.3318744&rft_dat=%3Cproquest_RIE%3E2918029314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918029314&rft_id=info:pmid/&rft_ieee_id=10275806&rfr_iscdi=true |