Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge

High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to prog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2024-02, Vol.32 (2), p.283-290
Hauptverfasser: An, Junjie, Zhou, Zhidao, Wang, Linfang, Ye, Wang, Li, Weizeng, Gao, Hanghang, Li, Zhi, Tian, Jinghui, Wang, Yan, Hu, Hongyang, Yue, Jinshan, Fan, Lingyan, Long, Shibing, Liu, Qi, Dou, Chunmeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 2
container_start_page 283
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 32
creator An, Junjie
Zhou, Zhidao
Wang, Linfang
Ye, Wang
Li, Weizeng
Gao, Hanghang
Li, Zhi
Tian, Jinghui
Wang, Yan
Hu, Hongyang
Yue, Jinshan
Fan, Lingyan
Long, Shibing
Liu, Qi
Dou, Chunmeng
description High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to program the RRAM cell, which causes high power consumption, long latency, and degradation on the memory lifetime. To address this issue, we propose a write-verify-free MLC RRAM macro for weight storage with 1) a cascode-current-mirror multibit write (CCM-MW) driver and 2) a nonbinary programming scheme (NB-PS) with a radix not greater than 2. A 180-nm 400-Kb RRAM test chip is demonstrated in silicon. For 2-bit-per-cell MLC storage, the value error rates can be reduced by 24.13% after introducing two redundant bits (RBDs). In addition, compared to the single-level cell (SLC) storage scheme, a 37.50% reduction in the number of cells can be achieved to store the ResNet-8 model with a 0.79% loss in inference accuracy without the need for WAV iterations.
doi_str_mv 10.1109/TVLSI.2023.3318744
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10275806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10275806</ieee_id><sourcerecordid>2918029314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-40d76fad3550e02e1c6ba11001d3eead907e1d7d972091dd04da526146fabd1a3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYp40fieFlVBSqlIPW5tNx4kqaCpDjpon-PS7tgNjMa3Tujewh5ZDBgDPTLYpXNJwMOXAyEYKmS8or0WByrSIe6DjMkIko5g1ty17Y7ACalhh5Zrn3VYbRCXxXH6NUj0mk2orPZcEqXbVWX9KOpN1Vt_ZGO67xxp1XReDqc0DVW5baj867xtkRqO9ptkY5diffkprBfLT5cep8sX8eL0XuUfb5NRsMsyrlUXSTBqaSwTsQxIHBkebKxIQ8wJxCt06CQOeW04qCZcyCdjXnCZDBtHLOiT57Pd_e--Tlg25ldc_B1eGm4ZilwLZgMKn5W5b5pW4-F2fvqOyQyDMwJn_nDZ074zAVfMD2dTRUi_jNwFaeB5S-7HWof</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918029314</pqid></control><display><type>article</type><title>Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge</title><source>IEEE Electronic Library (IEL)</source><creator>An, Junjie ; Zhou, Zhidao ; Wang, Linfang ; Ye, Wang ; Li, Weizeng ; Gao, Hanghang ; Li, Zhi ; Tian, Jinghui ; Wang, Yan ; Hu, Hongyang ; Yue, Jinshan ; Fan, Lingyan ; Long, Shibing ; Liu, Qi ; Dou, Chunmeng</creator><creatorcontrib>An, Junjie ; Zhou, Zhidao ; Wang, Linfang ; Ye, Wang ; Li, Weizeng ; Gao, Hanghang ; Li, Zhi ; Tian, Jinghui ; Wang, Yan ; Hu, Hongyang ; Yue, Jinshan ; Fan, Lingyan ; Long, Shibing ; Liu, Qi ; Dou, Chunmeng</creatorcontrib><description>High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to program the RRAM cell, which causes high power consumption, long latency, and degradation on the memory lifetime. To address this issue, we propose a write-verify-free MLC RRAM macro for weight storage with 1) a cascode-current-mirror multibit write (CCM-MW) driver and 2) a nonbinary programming scheme (NB-PS) with a radix not greater than 2. A 180-nm 400-Kb RRAM test chip is demonstrated in silicon. For 2-bit-per-cell MLC storage, the value error rates can be reduced by 24.13% after introducing two redundant bits (RBDs). In addition, compared to the single-level cell (SLC) storage scheme, a 37.50% reduction in the number of cells can be achieved to store the ResNet-8 model with a 0.79% loss in inference accuracy without the need for WAV iterations.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2023.3318744</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Circuit synthesis ; Edge AI ; Encoding ; Multilevel cell (MLC) ; Nonvolatile memory ; nonvolatile memory (NVM) ; Power consumption ; programming schemes ; Random access memory ; Resistive RAM ; resistive random access memory (RRAM)</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2024-02, Vol.32 (2), p.283-290</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-40d76fad3550e02e1c6ba11001d3eead907e1d7d972091dd04da526146fabd1a3</cites><orcidid>0000-0003-2192-9655 ; 0000-0003-2291-9598 ; 0000-0002-1400-4040 ; 0000-0002-1259-6310 ; 0009-0008-4893-7907 ; 0000-0002-7636-0227 ; 0000-0001-7062-831X ; 0000-0001-8234-7400 ; 0000-0001-6220-4461 ; 0000-0002-3740-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10275806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10275806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>An, Junjie</creatorcontrib><creatorcontrib>Zhou, Zhidao</creatorcontrib><creatorcontrib>Wang, Linfang</creatorcontrib><creatorcontrib>Ye, Wang</creatorcontrib><creatorcontrib>Li, Weizeng</creatorcontrib><creatorcontrib>Gao, Hanghang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Tian, Jinghui</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Hu, Hongyang</creatorcontrib><creatorcontrib>Yue, Jinshan</creatorcontrib><creatorcontrib>Fan, Lingyan</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Dou, Chunmeng</creatorcontrib><title>Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to program the RRAM cell, which causes high power consumption, long latency, and degradation on the memory lifetime. To address this issue, we propose a write-verify-free MLC RRAM macro for weight storage with 1) a cascode-current-mirror multibit write (CCM-MW) driver and 2) a nonbinary programming scheme (NB-PS) with a radix not greater than 2. A 180-nm 400-Kb RRAM test chip is demonstrated in silicon. For 2-bit-per-cell MLC storage, the value error rates can be reduced by 24.13% after introducing two redundant bits (RBDs). In addition, compared to the single-level cell (SLC) storage scheme, a 37.50% reduction in the number of cells can be achieved to store the ResNet-8 model with a 0.79% loss in inference accuracy without the need for WAV iterations.</description><subject>Artificial intelligence</subject><subject>Circuit synthesis</subject><subject>Edge AI</subject><subject>Encoding</subject><subject>Multilevel cell (MLC)</subject><subject>Nonvolatile memory</subject><subject>nonvolatile memory (NVM)</subject><subject>Power consumption</subject><subject>programming schemes</subject><subject>Random access memory</subject><subject>Resistive RAM</subject><subject>resistive random access memory (RRAM)</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYp40fieFlVBSqlIPW5tNx4kqaCpDjpon-PS7tgNjMa3Tujewh5ZDBgDPTLYpXNJwMOXAyEYKmS8or0WByrSIe6DjMkIko5g1ty17Y7ACalhh5Zrn3VYbRCXxXH6NUj0mk2orPZcEqXbVWX9KOpN1Vt_ZGO67xxp1XReDqc0DVW5baj867xtkRqO9ptkY5diffkprBfLT5cep8sX8eL0XuUfb5NRsMsyrlUXSTBqaSwTsQxIHBkebKxIQ8wJxCt06CQOeW04qCZcyCdjXnCZDBtHLOiT57Pd_e--Tlg25ldc_B1eGm4ZilwLZgMKn5W5b5pW4-F2fvqOyQyDMwJn_nDZ074zAVfMD2dTRUi_jNwFaeB5S-7HWof</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>An, Junjie</creator><creator>Zhou, Zhidao</creator><creator>Wang, Linfang</creator><creator>Ye, Wang</creator><creator>Li, Weizeng</creator><creator>Gao, Hanghang</creator><creator>Li, Zhi</creator><creator>Tian, Jinghui</creator><creator>Wang, Yan</creator><creator>Hu, Hongyang</creator><creator>Yue, Jinshan</creator><creator>Fan, Lingyan</creator><creator>Long, Shibing</creator><creator>Liu, Qi</creator><creator>Dou, Chunmeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2192-9655</orcidid><orcidid>https://orcid.org/0000-0003-2291-9598</orcidid><orcidid>https://orcid.org/0000-0002-1400-4040</orcidid><orcidid>https://orcid.org/0000-0002-1259-6310</orcidid><orcidid>https://orcid.org/0009-0008-4893-7907</orcidid><orcidid>https://orcid.org/0000-0002-7636-0227</orcidid><orcidid>https://orcid.org/0000-0001-7062-831X</orcidid><orcidid>https://orcid.org/0000-0001-8234-7400</orcidid><orcidid>https://orcid.org/0000-0001-6220-4461</orcidid><orcidid>https://orcid.org/0000-0002-3740-9868</orcidid></search><sort><creationdate>20240201</creationdate><title>Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge</title><author>An, Junjie ; Zhou, Zhidao ; Wang, Linfang ; Ye, Wang ; Li, Weizeng ; Gao, Hanghang ; Li, Zhi ; Tian, Jinghui ; Wang, Yan ; Hu, Hongyang ; Yue, Jinshan ; Fan, Lingyan ; Long, Shibing ; Liu, Qi ; Dou, Chunmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-40d76fad3550e02e1c6ba11001d3eead907e1d7d972091dd04da526146fabd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Circuit synthesis</topic><topic>Edge AI</topic><topic>Encoding</topic><topic>Multilevel cell (MLC)</topic><topic>Nonvolatile memory</topic><topic>nonvolatile memory (NVM)</topic><topic>Power consumption</topic><topic>programming schemes</topic><topic>Random access memory</topic><topic>Resistive RAM</topic><topic>resistive random access memory (RRAM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Junjie</creatorcontrib><creatorcontrib>Zhou, Zhidao</creatorcontrib><creatorcontrib>Wang, Linfang</creatorcontrib><creatorcontrib>Ye, Wang</creatorcontrib><creatorcontrib>Li, Weizeng</creatorcontrib><creatorcontrib>Gao, Hanghang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Tian, Jinghui</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Hu, Hongyang</creatorcontrib><creatorcontrib>Yue, Jinshan</creatorcontrib><creatorcontrib>Fan, Lingyan</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Dou, Chunmeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>An, Junjie</au><au>Zhou, Zhidao</au><au>Wang, Linfang</au><au>Ye, Wang</au><au>Li, Weizeng</au><au>Gao, Hanghang</au><au>Li, Zhi</au><au>Tian, Jinghui</au><au>Wang, Yan</au><au>Hu, Hongyang</au><au>Yue, Jinshan</au><au>Fan, Lingyan</au><au>Long, Shibing</au><au>Liu, Qi</au><au>Dou, Chunmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>32</volume><issue>2</issue><spage>283</spage><epage>290</epage><pages>283-290</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>High-density and reliable multilevel-cell (MLC) resistive random access memory (RRAM) is expected to meet the ever-increasing demand for on-chip weight storages in the intelligent edge devices. However, due to the device variations, many write-and-verify (WAV) iterations are usually required to program the RRAM cell, which causes high power consumption, long latency, and degradation on the memory lifetime. To address this issue, we propose a write-verify-free MLC RRAM macro for weight storage with 1) a cascode-current-mirror multibit write (CCM-MW) driver and 2) a nonbinary programming scheme (NB-PS) with a radix not greater than 2. A 180-nm 400-Kb RRAM test chip is demonstrated in silicon. For 2-bit-per-cell MLC storage, the value error rates can be reduced by 24.13% after introducing two redundant bits (RBDs). In addition, compared to the single-level cell (SLC) storage scheme, a 37.50% reduction in the number of cells can be achieved to store the ResNet-8 model with a 0.79% loss in inference accuracy without the need for WAV iterations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2023.3318744</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2192-9655</orcidid><orcidid>https://orcid.org/0000-0003-2291-9598</orcidid><orcidid>https://orcid.org/0000-0002-1400-4040</orcidid><orcidid>https://orcid.org/0000-0002-1259-6310</orcidid><orcidid>https://orcid.org/0009-0008-4893-7907</orcidid><orcidid>https://orcid.org/0000-0002-7636-0227</orcidid><orcidid>https://orcid.org/0000-0001-7062-831X</orcidid><orcidid>https://orcid.org/0000-0001-8234-7400</orcidid><orcidid>https://orcid.org/0000-0001-6220-4461</orcidid><orcidid>https://orcid.org/0000-0002-3740-9868</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2024-02, Vol.32 (2), p.283-290
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_10275806
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Circuit synthesis
Edge AI
Encoding
Multilevel cell (MLC)
Nonvolatile memory
nonvolatile memory (NVM)
Power consumption
programming schemes
Random access memory
Resistive RAM
resistive random access memory (RRAM)
title Write-Verify-Free MLC RRAM Using Nonbinary Encoding for AI Weight Storage at the Edge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Write-Verify-Free%20MLC%20RRAM%20Using%20Nonbinary%20Encoding%20for%20AI%20Weight%20Storage%20at%20the%20Edge&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=An,%20Junjie&rft.date=2024-02-01&rft.volume=32&rft.issue=2&rft.spage=283&rft.epage=290&rft.pages=283-290&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2023.3318744&rft_dat=%3Cproquest_RIE%3E2918029314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918029314&rft_id=info:pmid/&rft_ieee_id=10275806&rfr_iscdi=true