Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations
Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) ma...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2024-08, Vol.71 (8), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 71 |
creator | Xiang, Dawei Yang, Chen Li, Hao Zhou, Yiheng Cao, Yueyang Sun, Zhiwen Xie, Qiang |
description | Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) may interact with the system's normal operation leading to an interrupted measurement and degraded accuracy. To address these challenges, this article proposes an online continuous battery impedance monitoring method by using the high-frequency (HF) electromagnetic oscillations excited by the dc-dc converter's pulse width modulation (PWM) switching in a battery system. First, the principle of the switching oscillation method is analyzed, including the HF equivalent circuit and the analytical expression of the battery switching oscillation current. Then, a battery impedance online monitoring scheme is proposed, where the switching oscillation current is captured by a specially designed noncontact HF oscillation sensor, and the oscillation features including frequency and damping ratio are extracted by the half-power bandwidth algorithm to estimate the battery's equivalent resistance and reactance. Finally, experimental work was carried out on a 24 V/ 6.6 Ah 18 650 Li-ion battery module test system, and the results demonstrate excellent performance, including continuous real-time monitoring, high accuracy, and good robustness to converter dynamic operation. |
doi_str_mv | 10.1109/TIE.2023.3317850 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10275779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10275779</ieee_id><sourcerecordid>3041502226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-151f66049a964d72c1b6db155a86f449f3bd458fedef38cfd3637e85307fc0453</originalsourceid><addsrcrecordid>eNpNkL9PAjEYhhujiYjuDg5NnIv9eb0b9UC9BMMAzJej10rJ0WJbVP57j8Dg9C7P-315HwDuCR4RgounRTUZUUzZiDEic4EvwIAIIVFR8PwSDDCVOcKYZ9fgJsYNxoQLIgagm7nOOg0_vLPJB-s-oTdwatPa7reo8g6-NCnpcIDVdqfbxikNl_GIjUs0LmHp3bcOPQDnujNo8qts0i2c_9ik1kdsFpXtuiZZ7-ItuDJNF_XdOYdg-TpZlO9oOnuryucpUpSLhIggJsswL5oi462kiqyydtWvafLMcF4Ytmq5yI1utWG5Mi3LmNS5YFgahblgQ_B4ursL_muvY6o3fh9c_7JmmBOBKaVZT-ETpYKPMWhT74LdNuFQE1wfnda90_rotD477SsPp4rVWv_DqRRSFuwP_adygg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041502226</pqid></control><display><type>article</type><title>Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations</title><source>IEEE Electronic Library (IEL)</source><creator>Xiang, Dawei ; Yang, Chen ; Li, Hao ; Zhou, Yiheng ; Cao, Yueyang ; Sun, Zhiwen ; Xie, Qiang</creator><creatorcontrib>Xiang, Dawei ; Yang, Chen ; Li, Hao ; Zhou, Yiheng ; Cao, Yueyang ; Sun, Zhiwen ; Xie, Qiang</creatorcontrib><description>Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) may interact with the system's normal operation leading to an interrupted measurement and degraded accuracy. To address these challenges, this article proposes an online continuous battery impedance monitoring method by using the high-frequency (HF) electromagnetic oscillations excited by the dc-dc converter's pulse width modulation (PWM) switching in a battery system. First, the principle of the switching oscillation method is analyzed, including the HF equivalent circuit and the analytical expression of the battery switching oscillation current. Then, a battery impedance online monitoring scheme is proposed, where the switching oscillation current is captured by a specially designed noncontact HF oscillation sensor, and the oscillation features including frequency and damping ratio are extracted by the half-power bandwidth algorithm to estimate the battery's equivalent resistance and reactance. Finally, experimental work was carried out on a 24 V/ 6.6 Ah 18 650 Li-ion battery module test system, and the results demonstrate excellent performance, including continuous real-time monitoring, high accuracy, and good robustness to converter dynamic operation.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2023.3317850</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Continuous real-time monitoring ; Damping ratio ; dc–dc converter ; Equivalent circuits ; high-frequency (HF) switching oscillation ; Impedance ; li-ion battery impedance ; Lithium-ion batteries ; Monitoring ; noncontact sensor ; Oscillations ; Oscillators ; Pulse duration modulation ; Pulse width modulation ; Reactance ; Rechargeable batteries ; Switches ; Switching ; Switching circuits ; Voltage converters (DC to DC)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-08, Vol.71 (8), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-151f66049a964d72c1b6db155a86f449f3bd458fedef38cfd3637e85307fc0453</cites><orcidid>0000-0003-0824-6518 ; 0000-0002-2930-5778 ; 0000-0001-9207-3909 ; 0000-0003-2641-8467 ; 0000-0002-7032-1059 ; 0000-0003-1648-6378 ; 0000-0001-6151-8522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10275779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10275779$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiang, Dawei</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhou, Yiheng</creatorcontrib><creatorcontrib>Cao, Yueyang</creatorcontrib><creatorcontrib>Sun, Zhiwen</creatorcontrib><creatorcontrib>Xie, Qiang</creatorcontrib><title>Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) may interact with the system's normal operation leading to an interrupted measurement and degraded accuracy. To address these challenges, this article proposes an online continuous battery impedance monitoring method by using the high-frequency (HF) electromagnetic oscillations excited by the dc-dc converter's pulse width modulation (PWM) switching in a battery system. First, the principle of the switching oscillation method is analyzed, including the HF equivalent circuit and the analytical expression of the battery switching oscillation current. Then, a battery impedance online monitoring scheme is proposed, where the switching oscillation current is captured by a specially designed noncontact HF oscillation sensor, and the oscillation features including frequency and damping ratio are extracted by the half-power bandwidth algorithm to estimate the battery's equivalent resistance and reactance. Finally, experimental work was carried out on a 24 V/ 6.6 Ah 18 650 Li-ion battery module test system, and the results demonstrate excellent performance, including continuous real-time monitoring, high accuracy, and good robustness to converter dynamic operation.</description><subject>Algorithms</subject><subject>Continuous real-time monitoring</subject><subject>Damping ratio</subject><subject>dc–dc converter</subject><subject>Equivalent circuits</subject><subject>high-frequency (HF) switching oscillation</subject><subject>Impedance</subject><subject>li-ion battery impedance</subject><subject>Lithium-ion batteries</subject><subject>Monitoring</subject><subject>noncontact sensor</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Pulse duration modulation</subject><subject>Pulse width modulation</subject><subject>Reactance</subject><subject>Rechargeable batteries</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching circuits</subject><subject>Voltage converters (DC to DC)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL9PAjEYhhujiYjuDg5NnIv9eb0b9UC9BMMAzJej10rJ0WJbVP57j8Dg9C7P-315HwDuCR4RgounRTUZUUzZiDEic4EvwIAIIVFR8PwSDDCVOcKYZ9fgJsYNxoQLIgagm7nOOg0_vLPJB-s-oTdwatPa7reo8g6-NCnpcIDVdqfbxikNl_GIjUs0LmHp3bcOPQDnujNo8qts0i2c_9ik1kdsFpXtuiZZ7-ItuDJNF_XdOYdg-TpZlO9oOnuryucpUpSLhIggJsswL5oi462kiqyydtWvafLMcF4Ytmq5yI1utWG5Mi3LmNS5YFgahblgQ_B4ursL_muvY6o3fh9c_7JmmBOBKaVZT-ETpYKPMWhT74LdNuFQE1wfnda90_rotD477SsPp4rVWv_DqRRSFuwP_adygg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Xiang, Dawei</creator><creator>Yang, Chen</creator><creator>Li, Hao</creator><creator>Zhou, Yiheng</creator><creator>Cao, Yueyang</creator><creator>Sun, Zhiwen</creator><creator>Xie, Qiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0824-6518</orcidid><orcidid>https://orcid.org/0000-0002-2930-5778</orcidid><orcidid>https://orcid.org/0000-0001-9207-3909</orcidid><orcidid>https://orcid.org/0000-0003-2641-8467</orcidid><orcidid>https://orcid.org/0000-0002-7032-1059</orcidid><orcidid>https://orcid.org/0000-0003-1648-6378</orcidid><orcidid>https://orcid.org/0000-0001-6151-8522</orcidid></search><sort><creationdate>20240801</creationdate><title>Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations</title><author>Xiang, Dawei ; Yang, Chen ; Li, Hao ; Zhou, Yiheng ; Cao, Yueyang ; Sun, Zhiwen ; Xie, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-151f66049a964d72c1b6db155a86f449f3bd458fedef38cfd3637e85307fc0453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Continuous real-time monitoring</topic><topic>Damping ratio</topic><topic>dc–dc converter</topic><topic>Equivalent circuits</topic><topic>high-frequency (HF) switching oscillation</topic><topic>Impedance</topic><topic>li-ion battery impedance</topic><topic>Lithium-ion batteries</topic><topic>Monitoring</topic><topic>noncontact sensor</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Pulse duration modulation</topic><topic>Pulse width modulation</topic><topic>Reactance</topic><topic>Rechargeable batteries</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching circuits</topic><topic>Voltage converters (DC to DC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Dawei</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhou, Yiheng</creatorcontrib><creatorcontrib>Cao, Yueyang</creatorcontrib><creatorcontrib>Sun, Zhiwen</creatorcontrib><creatorcontrib>Xie, Qiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Dawei</au><au>Yang, Chen</au><au>Li, Hao</au><au>Zhou, Yiheng</au><au>Cao, Yueyang</au><au>Sun, Zhiwen</au><au>Xie, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>71</volume><issue>8</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) may interact with the system's normal operation leading to an interrupted measurement and degraded accuracy. To address these challenges, this article proposes an online continuous battery impedance monitoring method by using the high-frequency (HF) electromagnetic oscillations excited by the dc-dc converter's pulse width modulation (PWM) switching in a battery system. First, the principle of the switching oscillation method is analyzed, including the HF equivalent circuit and the analytical expression of the battery switching oscillation current. Then, a battery impedance online monitoring scheme is proposed, where the switching oscillation current is captured by a specially designed noncontact HF oscillation sensor, and the oscillation features including frequency and damping ratio are extracted by the half-power bandwidth algorithm to estimate the battery's equivalent resistance and reactance. Finally, experimental work was carried out on a 24 V/ 6.6 Ah 18 650 Li-ion battery module test system, and the results demonstrate excellent performance, including continuous real-time monitoring, high accuracy, and good robustness to converter dynamic operation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2023.3317850</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0824-6518</orcidid><orcidid>https://orcid.org/0000-0002-2930-5778</orcidid><orcidid>https://orcid.org/0000-0001-9207-3909</orcidid><orcidid>https://orcid.org/0000-0003-2641-8467</orcidid><orcidid>https://orcid.org/0000-0002-7032-1059</orcidid><orcidid>https://orcid.org/0000-0003-1648-6378</orcidid><orcidid>https://orcid.org/0000-0001-6151-8522</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2024-08, Vol.71 (8), p.1-12 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_10275779 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Continuous real-time monitoring Damping ratio dc–dc converter Equivalent circuits high-frequency (HF) switching oscillation Impedance li-ion battery impedance Lithium-ion batteries Monitoring noncontact sensor Oscillations Oscillators Pulse duration modulation Pulse width modulation Reactance Rechargeable batteries Switches Switching Switching circuits Voltage converters (DC to DC) |
title | Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Monitoring%20of%20Lithium-Ion%20Battery%20Impedance%20Using%20DC-DC%20Converter%20Self-Excited%20Switching%20Oscillations&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Xiang,%20Dawei&rft.date=2024-08-01&rft.volume=71&rft.issue=8&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2023.3317850&rft_dat=%3Cproquest_RIE%3E3041502226%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041502226&rft_id=info:pmid/&rft_ieee_id=10275779&rfr_iscdi=true |