Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations

Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2024-08, Vol.71 (8), p.1-12
Hauptverfasser: Xiang, Dawei, Yang, Chen, Li, Hao, Zhou, Yiheng, Cao, Yueyang, Sun, Zhiwen, Xie, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 8
container_start_page 1
container_title IEEE transactions on industrial electronics (1982)
container_volume 71
creator Xiang, Dawei
Yang, Chen
Li, Hao
Zhou, Yiheng
Cao, Yueyang
Sun, Zhiwen
Xie, Qiang
description Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) may interact with the system's normal operation leading to an interrupted measurement and degraded accuracy. To address these challenges, this article proposes an online continuous battery impedance monitoring method by using the high-frequency (HF) electromagnetic oscillations excited by the dc-dc converter's pulse width modulation (PWM) switching in a battery system. First, the principle of the switching oscillation method is analyzed, including the HF equivalent circuit and the analytical expression of the battery switching oscillation current. Then, a battery impedance online monitoring scheme is proposed, where the switching oscillation current is captured by a specially designed noncontact HF oscillation sensor, and the oscillation features including frequency and damping ratio are extracted by the half-power bandwidth algorithm to estimate the battery's equivalent resistance and reactance. Finally, experimental work was carried out on a 24 V/ 6.6 Ah 18 650 Li-ion battery module test system, and the results demonstrate excellent performance, including continuous real-time monitoring, high accuracy, and good robustness to converter dynamic operation.
doi_str_mv 10.1109/TIE.2023.3317850
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10275779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10275779</ieee_id><sourcerecordid>3041502226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-151f66049a964d72c1b6db155a86f449f3bd458fedef38cfd3637e85307fc0453</originalsourceid><addsrcrecordid>eNpNkL9PAjEYhhujiYjuDg5NnIv9eb0b9UC9BMMAzJej10rJ0WJbVP57j8Dg9C7P-315HwDuCR4RgounRTUZUUzZiDEic4EvwIAIIVFR8PwSDDCVOcKYZ9fgJsYNxoQLIgagm7nOOg0_vLPJB-s-oTdwatPa7reo8g6-NCnpcIDVdqfbxikNl_GIjUs0LmHp3bcOPQDnujNo8qts0i2c_9ik1kdsFpXtuiZZ7-ItuDJNF_XdOYdg-TpZlO9oOnuryucpUpSLhIggJsswL5oi462kiqyydtWvafLMcF4Ytmq5yI1utWG5Mi3LmNS5YFgahblgQ_B4ursL_muvY6o3fh9c_7JmmBOBKaVZT-ETpYKPMWhT74LdNuFQE1wfnda90_rotD477SsPp4rVWv_DqRRSFuwP_adygg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041502226</pqid></control><display><type>article</type><title>Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations</title><source>IEEE Electronic Library (IEL)</source><creator>Xiang, Dawei ; Yang, Chen ; Li, Hao ; Zhou, Yiheng ; Cao, Yueyang ; Sun, Zhiwen ; Xie, Qiang</creator><creatorcontrib>Xiang, Dawei ; Yang, Chen ; Li, Hao ; Zhou, Yiheng ; Cao, Yueyang ; Sun, Zhiwen ; Xie, Qiang</creatorcontrib><description>Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) may interact with the system's normal operation leading to an interrupted measurement and degraded accuracy. To address these challenges, this article proposes an online continuous battery impedance monitoring method by using the high-frequency (HF) electromagnetic oscillations excited by the dc-dc converter's pulse width modulation (PWM) switching in a battery system. First, the principle of the switching oscillation method is analyzed, including the HF equivalent circuit and the analytical expression of the battery switching oscillation current. Then, a battery impedance online monitoring scheme is proposed, where the switching oscillation current is captured by a specially designed noncontact HF oscillation sensor, and the oscillation features including frequency and damping ratio are extracted by the half-power bandwidth algorithm to estimate the battery's equivalent resistance and reactance. Finally, experimental work was carried out on a 24 V/ 6.6 Ah 18 650 Li-ion battery module test system, and the results demonstrate excellent performance, including continuous real-time monitoring, high accuracy, and good robustness to converter dynamic operation.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2023.3317850</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Continuous real-time monitoring ; Damping ratio ; dc–dc converter ; Equivalent circuits ; high-frequency (HF) switching oscillation ; Impedance ; li-ion battery impedance ; Lithium-ion batteries ; Monitoring ; noncontact sensor ; Oscillations ; Oscillators ; Pulse duration modulation ; Pulse width modulation ; Reactance ; Rechargeable batteries ; Switches ; Switching ; Switching circuits ; Voltage converters (DC to DC)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-08, Vol.71 (8), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-151f66049a964d72c1b6db155a86f449f3bd458fedef38cfd3637e85307fc0453</cites><orcidid>0000-0003-0824-6518 ; 0000-0002-2930-5778 ; 0000-0001-9207-3909 ; 0000-0003-2641-8467 ; 0000-0002-7032-1059 ; 0000-0003-1648-6378 ; 0000-0001-6151-8522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10275779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10275779$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiang, Dawei</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhou, Yiheng</creatorcontrib><creatorcontrib>Cao, Yueyang</creatorcontrib><creatorcontrib>Sun, Zhiwen</creatorcontrib><creatorcontrib>Xie, Qiang</creatorcontrib><title>Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) may interact with the system's normal operation leading to an interrupted measurement and degraded accuracy. To address these challenges, this article proposes an online continuous battery impedance monitoring method by using the high-frequency (HF) electromagnetic oscillations excited by the dc-dc converter's pulse width modulation (PWM) switching in a battery system. First, the principle of the switching oscillation method is analyzed, including the HF equivalent circuit and the analytical expression of the battery switching oscillation current. Then, a battery impedance online monitoring scheme is proposed, where the switching oscillation current is captured by a specially designed noncontact HF oscillation sensor, and the oscillation features including frequency and damping ratio are extracted by the half-power bandwidth algorithm to estimate the battery's equivalent resistance and reactance. Finally, experimental work was carried out on a 24 V/ 6.6 Ah 18 650 Li-ion battery module test system, and the results demonstrate excellent performance, including continuous real-time monitoring, high accuracy, and good robustness to converter dynamic operation.</description><subject>Algorithms</subject><subject>Continuous real-time monitoring</subject><subject>Damping ratio</subject><subject>dc–dc converter</subject><subject>Equivalent circuits</subject><subject>high-frequency (HF) switching oscillation</subject><subject>Impedance</subject><subject>li-ion battery impedance</subject><subject>Lithium-ion batteries</subject><subject>Monitoring</subject><subject>noncontact sensor</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Pulse duration modulation</subject><subject>Pulse width modulation</subject><subject>Reactance</subject><subject>Rechargeable batteries</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching circuits</subject><subject>Voltage converters (DC to DC)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL9PAjEYhhujiYjuDg5NnIv9eb0b9UC9BMMAzJej10rJ0WJbVP57j8Dg9C7P-315HwDuCR4RgounRTUZUUzZiDEic4EvwIAIIVFR8PwSDDCVOcKYZ9fgJsYNxoQLIgagm7nOOg0_vLPJB-s-oTdwatPa7reo8g6-NCnpcIDVdqfbxikNl_GIjUs0LmHp3bcOPQDnujNo8qts0i2c_9ik1kdsFpXtuiZZ7-ItuDJNF_XdOYdg-TpZlO9oOnuryucpUpSLhIggJsswL5oi462kiqyydtWvafLMcF4Ytmq5yI1utWG5Mi3LmNS5YFgahblgQ_B4ursL_muvY6o3fh9c_7JmmBOBKaVZT-ETpYKPMWhT74LdNuFQE1wfnda90_rotD477SsPp4rVWv_DqRRSFuwP_adygg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Xiang, Dawei</creator><creator>Yang, Chen</creator><creator>Li, Hao</creator><creator>Zhou, Yiheng</creator><creator>Cao, Yueyang</creator><creator>Sun, Zhiwen</creator><creator>Xie, Qiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0824-6518</orcidid><orcidid>https://orcid.org/0000-0002-2930-5778</orcidid><orcidid>https://orcid.org/0000-0001-9207-3909</orcidid><orcidid>https://orcid.org/0000-0003-2641-8467</orcidid><orcidid>https://orcid.org/0000-0002-7032-1059</orcidid><orcidid>https://orcid.org/0000-0003-1648-6378</orcidid><orcidid>https://orcid.org/0000-0001-6151-8522</orcidid></search><sort><creationdate>20240801</creationdate><title>Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations</title><author>Xiang, Dawei ; Yang, Chen ; Li, Hao ; Zhou, Yiheng ; Cao, Yueyang ; Sun, Zhiwen ; Xie, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-151f66049a964d72c1b6db155a86f449f3bd458fedef38cfd3637e85307fc0453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Continuous real-time monitoring</topic><topic>Damping ratio</topic><topic>dc–dc converter</topic><topic>Equivalent circuits</topic><topic>high-frequency (HF) switching oscillation</topic><topic>Impedance</topic><topic>li-ion battery impedance</topic><topic>Lithium-ion batteries</topic><topic>Monitoring</topic><topic>noncontact sensor</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Pulse duration modulation</topic><topic>Pulse width modulation</topic><topic>Reactance</topic><topic>Rechargeable batteries</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching circuits</topic><topic>Voltage converters (DC to DC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Dawei</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhou, Yiheng</creatorcontrib><creatorcontrib>Cao, Yueyang</creatorcontrib><creatorcontrib>Sun, Zhiwen</creatorcontrib><creatorcontrib>Xie, Qiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Dawei</au><au>Yang, Chen</au><au>Li, Hao</au><au>Zhou, Yiheng</au><au>Cao, Yueyang</au><au>Sun, Zhiwen</au><au>Xie, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>71</volume><issue>8</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Online impedance monitoring is an important technique for acquiring the condition information of a Lithium-ion (Li-ion) battery (e.g., state of charge and internal temperature) for safe, reliable, and efficient operation. The existing ac excitation/response method ( Z ( jω ) = V ( jω )/ I ( jω )) may interact with the system's normal operation leading to an interrupted measurement and degraded accuracy. To address these challenges, this article proposes an online continuous battery impedance monitoring method by using the high-frequency (HF) electromagnetic oscillations excited by the dc-dc converter's pulse width modulation (PWM) switching in a battery system. First, the principle of the switching oscillation method is analyzed, including the HF equivalent circuit and the analytical expression of the battery switching oscillation current. Then, a battery impedance online monitoring scheme is proposed, where the switching oscillation current is captured by a specially designed noncontact HF oscillation sensor, and the oscillation features including frequency and damping ratio are extracted by the half-power bandwidth algorithm to estimate the battery's equivalent resistance and reactance. Finally, experimental work was carried out on a 24 V/ 6.6 Ah 18 650 Li-ion battery module test system, and the results demonstrate excellent performance, including continuous real-time monitoring, high accuracy, and good robustness to converter dynamic operation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2023.3317850</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0824-6518</orcidid><orcidid>https://orcid.org/0000-0002-2930-5778</orcidid><orcidid>https://orcid.org/0000-0001-9207-3909</orcidid><orcidid>https://orcid.org/0000-0003-2641-8467</orcidid><orcidid>https://orcid.org/0000-0002-7032-1059</orcidid><orcidid>https://orcid.org/0000-0003-1648-6378</orcidid><orcidid>https://orcid.org/0000-0001-6151-8522</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2024-08, Vol.71 (8), p.1-12
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_10275779
source IEEE Electronic Library (IEL)
subjects Algorithms
Continuous real-time monitoring
Damping ratio
dc–dc converter
Equivalent circuits
high-frequency (HF) switching oscillation
Impedance
li-ion battery impedance
Lithium-ion batteries
Monitoring
noncontact sensor
Oscillations
Oscillators
Pulse duration modulation
Pulse width modulation
Reactance
Rechargeable batteries
Switches
Switching
Switching circuits
Voltage converters (DC to DC)
title Online Monitoring of Lithium-Ion Battery Impedance Using DC-DC Converter Self-Excited Switching Oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Monitoring%20of%20Lithium-Ion%20Battery%20Impedance%20Using%20DC-DC%20Converter%20Self-Excited%20Switching%20Oscillations&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Xiang,%20Dawei&rft.date=2024-08-01&rft.volume=71&rft.issue=8&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2023.3317850&rft_dat=%3Cproquest_RIE%3E3041502226%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041502226&rft_id=info:pmid/&rft_ieee_id=10275779&rfr_iscdi=true