UAV-Assisted Wireless-Powered Two-Way Communications

In this paper, we investigate the optimal resource allocation in unmanned aerial vehicle (UAV)-assisted wireless-powered two-way communications. The communication process considered here consists of two steps. First, the UAV transmits a control signal over wireless links while ground terminals (GTs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-03, Vol.25 (3), p.2641-2655
Hauptverfasser: Park, Gitae, Heo, Kanghyun, Lee, Woongsup, Lee, Kisong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2655
container_issue 3
container_start_page 2641
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Park, Gitae
Heo, Kanghyun
Lee, Woongsup
Lee, Kisong
description In this paper, we investigate the optimal resource allocation in unmanned aerial vehicle (UAV)-assisted wireless-powered two-way communications. The communication process considered here consists of two steps. First, the UAV transmits a control signal over wireless links while ground terminals (GTs) receive information and harvest energy simultaneously, with each GT then using the harvested energy to send data to the UAV. We aim to maximize the minimum uplink throughput among GTs while ensuring the minimum requirement of the downlink throughput for each GT by optimizing the time allocation, the transmit power and the trajectory of the UAV along with the energy harvesting ratio of GTs. First, we propose an effective optimization-based approach to address the non-convexity of the formulated problem, which is difficult to solve. Specifically, we apply a successive convex optimization technique to approximate the convex problem for each optimization variable and find the optimal resource management strategy through a block coordinate descent algorithm. To reduce the high computational complexity of the optimization-based approach, we also develop a deep learning (DL)-based approach consisting of an efficient deep neural network framework and a novel training methodology. Simulation results confirm that the proposed schemes show significant performance improvements over existing baseline schemes. We also confirm that the DL-based scheme achieves performance comparable to the optimization-based scheme with a much shorter computation time.
doi_str_mv 10.1109/TITS.2023.3319609
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10274676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10274676</ieee_id><sourcerecordid>3041502255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4848ddf23be341cb453c86a3ffdb58c212fb78d743eb2100fde45e7fe24c90f23</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhpfSQq3tDyj0IPS86cx-5OMo0g9BaKGxHpdkMwsRde1uRPz3TdBDTzO8PO8MPIw9IiSIULyU8_I7ESBkIiUWKRRXbIRa5xwA0-thF4oXoOGW3cW47lOlEUdMLac_fBpjGztqJqs20IZi5F_-SKEPyqPnq-o0mfnt9rBrbdW1fhfv2Y2rNpEeLnPMlm-v5eyDLz7f57Ppgluh0o6rXOVN44SsSSq0tdLS5mklnWtqnVuBwtVZ3mRKUi0QwDWkNGWOhLIF9L0xez7f3Qf_e6DYmbU_hF3_0khQqEEIrXsKz5QNPsZAzuxDu63CySCYQY4Z5JhBjrnI6TtP505LRP94kak0S-Ufen1fog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041502255</pqid></control><display><type>article</type><title>UAV-Assisted Wireless-Powered Two-Way Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Gitae ; Heo, Kanghyun ; Lee, Woongsup ; Lee, Kisong</creator><creatorcontrib>Park, Gitae ; Heo, Kanghyun ; Lee, Woongsup ; Lee, Kisong</creatorcontrib><description>In this paper, we investigate the optimal resource allocation in unmanned aerial vehicle (UAV)-assisted wireless-powered two-way communications. The communication process considered here consists of two steps. First, the UAV transmits a control signal over wireless links while ground terminals (GTs) receive information and harvest energy simultaneously, with each GT then using the harvested energy to send data to the UAV. We aim to maximize the minimum uplink throughput among GTs while ensuring the minimum requirement of the downlink throughput for each GT by optimizing the time allocation, the transmit power and the trajectory of the UAV along with the energy harvesting ratio of GTs. First, we propose an effective optimization-based approach to address the non-convexity of the formulated problem, which is difficult to solve. Specifically, we apply a successive convex optimization technique to approximate the convex problem for each optimization variable and find the optimal resource management strategy through a block coordinate descent algorithm. To reduce the high computational complexity of the optimization-based approach, we also develop a deep learning (DL)-based approach consisting of an efficient deep neural network framework and a novel training methodology. Simulation results confirm that the proposed schemes show significant performance improvements over existing baseline schemes. We also confirm that the DL-based scheme achieves performance comparable to the optimization-based scheme with a much shorter computation time.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3319609</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Autonomous aerial vehicles ; convex optimization ; Convexity ; Downlink ; Energy harvesting ; Machine learning ; Optimization ; Optimization techniques ; Resource allocation ; Resource management ; SWIPT ; Throughput ; Trajectory ; trajectory design ; two-way communications ; UAV communications ; Unmanned aerial vehicles ; Wireless communication ; Wireless communications</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-03, Vol.25 (3), p.2641-2655</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4848ddf23be341cb453c86a3ffdb58c212fb78d743eb2100fde45e7fe24c90f23</cites><orcidid>0000-0002-9431-7804 ; 0000-0001-8206-4558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10274676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10274676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Gitae</creatorcontrib><creatorcontrib>Heo, Kanghyun</creatorcontrib><creatorcontrib>Lee, Woongsup</creatorcontrib><creatorcontrib>Lee, Kisong</creatorcontrib><title>UAV-Assisted Wireless-Powered Two-Way Communications</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this paper, we investigate the optimal resource allocation in unmanned aerial vehicle (UAV)-assisted wireless-powered two-way communications. The communication process considered here consists of two steps. First, the UAV transmits a control signal over wireless links while ground terminals (GTs) receive information and harvest energy simultaneously, with each GT then using the harvested energy to send data to the UAV. We aim to maximize the minimum uplink throughput among GTs while ensuring the minimum requirement of the downlink throughput for each GT by optimizing the time allocation, the transmit power and the trajectory of the UAV along with the energy harvesting ratio of GTs. First, we propose an effective optimization-based approach to address the non-convexity of the formulated problem, which is difficult to solve. Specifically, we apply a successive convex optimization technique to approximate the convex problem for each optimization variable and find the optimal resource management strategy through a block coordinate descent algorithm. To reduce the high computational complexity of the optimization-based approach, we also develop a deep learning (DL)-based approach consisting of an efficient deep neural network framework and a novel training methodology. Simulation results confirm that the proposed schemes show significant performance improvements over existing baseline schemes. We also confirm that the DL-based scheme achieves performance comparable to the optimization-based scheme with a much shorter computation time.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autonomous aerial vehicles</subject><subject>convex optimization</subject><subject>Convexity</subject><subject>Downlink</subject><subject>Energy harvesting</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>SWIPT</subject><subject>Throughput</subject><subject>Trajectory</subject><subject>trajectory design</subject><subject>two-way communications</subject><subject>UAV communications</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rwkAQhpfSQq3tDyj0IPS86cx-5OMo0g9BaKGxHpdkMwsRde1uRPz3TdBDTzO8PO8MPIw9IiSIULyU8_I7ESBkIiUWKRRXbIRa5xwA0-thF4oXoOGW3cW47lOlEUdMLac_fBpjGztqJqs20IZi5F_-SKEPyqPnq-o0mfnt9rBrbdW1fhfv2Y2rNpEeLnPMlm-v5eyDLz7f57Ppgluh0o6rXOVN44SsSSq0tdLS5mklnWtqnVuBwtVZ3mRKUi0QwDWkNGWOhLIF9L0xez7f3Qf_e6DYmbU_hF3_0khQqEEIrXsKz5QNPsZAzuxDu63CySCYQY4Z5JhBjrnI6TtP505LRP94kak0S-Ufen1fog</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Park, Gitae</creator><creator>Heo, Kanghyun</creator><creator>Lee, Woongsup</creator><creator>Lee, Kisong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9431-7804</orcidid><orcidid>https://orcid.org/0000-0001-8206-4558</orcidid></search><sort><creationdate>20240301</creationdate><title>UAV-Assisted Wireless-Powered Two-Way Communications</title><author>Park, Gitae ; Heo, Kanghyun ; Lee, Woongsup ; Lee, Kisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4848ddf23be341cb453c86a3ffdb58c212fb78d743eb2100fde45e7fe24c90f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autonomous aerial vehicles</topic><topic>convex optimization</topic><topic>Convexity</topic><topic>Downlink</topic><topic>Energy harvesting</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>SWIPT</topic><topic>Throughput</topic><topic>Trajectory</topic><topic>trajectory design</topic><topic>two-way communications</topic><topic>UAV communications</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Gitae</creatorcontrib><creatorcontrib>Heo, Kanghyun</creatorcontrib><creatorcontrib>Lee, Woongsup</creatorcontrib><creatorcontrib>Lee, Kisong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Gitae</au><au>Heo, Kanghyun</au><au>Lee, Woongsup</au><au>Lee, Kisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV-Assisted Wireless-Powered Two-Way Communications</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>25</volume><issue>3</issue><spage>2641</spage><epage>2655</epage><pages>2641-2655</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this paper, we investigate the optimal resource allocation in unmanned aerial vehicle (UAV)-assisted wireless-powered two-way communications. The communication process considered here consists of two steps. First, the UAV transmits a control signal over wireless links while ground terminals (GTs) receive information and harvest energy simultaneously, with each GT then using the harvested energy to send data to the UAV. We aim to maximize the minimum uplink throughput among GTs while ensuring the minimum requirement of the downlink throughput for each GT by optimizing the time allocation, the transmit power and the trajectory of the UAV along with the energy harvesting ratio of GTs. First, we propose an effective optimization-based approach to address the non-convexity of the formulated problem, which is difficult to solve. Specifically, we apply a successive convex optimization technique to approximate the convex problem for each optimization variable and find the optimal resource management strategy through a block coordinate descent algorithm. To reduce the high computational complexity of the optimization-based approach, we also develop a deep learning (DL)-based approach consisting of an efficient deep neural network framework and a novel training methodology. Simulation results confirm that the proposed schemes show significant performance improvements over existing baseline schemes. We also confirm that the DL-based scheme achieves performance comparable to the optimization-based scheme with a much shorter computation time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3319609</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9431-7804</orcidid><orcidid>https://orcid.org/0000-0001-8206-4558</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-03, Vol.25 (3), p.2641-2655
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10274676
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Autonomous aerial vehicles
convex optimization
Convexity
Downlink
Energy harvesting
Machine learning
Optimization
Optimization techniques
Resource allocation
Resource management
SWIPT
Throughput
Trajectory
trajectory design
two-way communications
UAV communications
Unmanned aerial vehicles
Wireless communication
Wireless communications
title UAV-Assisted Wireless-Powered Two-Way Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV-Assisted%20Wireless-Powered%20Two-Way%20Communications&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Park,%20Gitae&rft.date=2024-03-01&rft.volume=25&rft.issue=3&rft.spage=2641&rft.epage=2655&rft.pages=2641-2655&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3319609&rft_dat=%3Cproquest_RIE%3E3041502255%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041502255&rft_id=info:pmid/&rft_ieee_id=10274676&rfr_iscdi=true