Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement
Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. Th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2023-12, Vol.39 (6), p.4500-4519 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4519 |
---|---|
container_issue | 6 |
container_start_page | 4500 |
container_title | IEEE transactions on robotics |
container_volume | 39 |
creator | Tamadon, Izadyar Sadati, S. M. Hadi Mamone, Virginia Ferrari, Vincenzo Bergeles, Christos Menciassi, Arianna |
description | Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints. |
doi_str_mv | 10.1109/TRO.2023.3315966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10274565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10274565</ieee_id><sourcerecordid>2899471719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f2bd744f23eb0cfb3d71252d17127e0934e73ad53ecf85df8ef49164a76dbbf63</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobk7vHkQKXrx05mfTHMfwx2BjMKfXkLYv0NE2s2kH--_N2BTxEN4LfN43eR-EbgkeE4LV03q1HFNM2ZgxIlSSnKEhUZzEmCfpeeiFoDHDKh2gK-83GFOuMLtEA5aGjhE1RKt3qEvTd65xtet9tHKZ68o8Wpim3PaV6Vwb2XAWZVPWpqr20azZGV_uIJq49kB-mipcVrCtTA41NN01urCm8nBzqiP08fK8nr7F8-XrbDqZxzlTuIstzQrJuaUMMpzbjBWSUEELEooErBgHyUwhGOQ2FYVNwXJFEm5kUmSZTdgIPR5zt6376sF3ui59DlVlGgiraKqIFAmmRAb04R-6cX3bhN9pmirFZXhUBQofqbx13rdg9bYNS7d7TbA--NbBtz741iffYeT-FNxnNRS_Az-CA3B3BEoA-JNHJReJYN_7A4SH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899471719</pqid></control><display><type>article</type><title>Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement</title><source>IEEE Electronic Library (IEL)</source><creator>Tamadon, Izadyar ; Sadati, S. M. Hadi ; Mamone, Virginia ; Ferrari, Vincenzo ; Bergeles, Christos ; Menciassi, Arianna</creator><creatorcontrib>Tamadon, Izadyar ; Sadati, S. M. Hadi ; Mamone, Virginia ; Ferrari, Vincenzo ; Bergeles, Christos ; Menciassi, Arianna</creatorcontrib><description>Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3315966</identifier><identifier>PMID: 38249319</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Aorta ; Aortic valve surgery ; Bending ; Cameras ; Endoscopy ; Gears ; Haptic interfaces ; Heart surgery ; Heart valves ; Manipulators ; minimally invasive surgery (MIS) ; Misalignment ; Position errors ; Positioning devices (machinery) ; Robot arms ; robotic surgical endoscopy ; Surgery ; surgical manipulator control ; surgical navigation ; Valves ; Visual control ; Wires</subject><ispartof>IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4500-4519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f2bd744f23eb0cfb3d71252d17127e0934e73ad53ecf85df8ef49164a76dbbf63</citedby><cites>FETCH-LOGICAL-c390t-f2bd744f23eb0cfb3d71252d17127e0934e73ad53ecf85df8ef49164a76dbbf63</cites><orcidid>0000-0001-9294-2828 ; 0000-0002-5862-265X ; 0000-0002-7172-5119 ; 0000-0001-6348-1081 ; 0000-0002-9152-3194 ; 0000-0002-4613-5862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10274565$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38249319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamadon, Izadyar</creatorcontrib><creatorcontrib>Sadati, S. M. Hadi</creatorcontrib><creatorcontrib>Mamone, Virginia</creatorcontrib><creatorcontrib>Ferrari, Vincenzo</creatorcontrib><creatorcontrib>Bergeles, Christos</creatorcontrib><creatorcontrib>Menciassi, Arianna</creatorcontrib><title>Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><addtitle>IEEE Trans Robot</addtitle><description>Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints.</description><subject>Algorithms</subject><subject>Aorta</subject><subject>Aortic valve surgery</subject><subject>Bending</subject><subject>Cameras</subject><subject>Endoscopy</subject><subject>Gears</subject><subject>Haptic interfaces</subject><subject>Heart surgery</subject><subject>Heart valves</subject><subject>Manipulators</subject><subject>minimally invasive surgery (MIS)</subject><subject>Misalignment</subject><subject>Position errors</subject><subject>Positioning devices (machinery)</subject><subject>Robot arms</subject><subject>robotic surgical endoscopy</subject><subject>Surgery</subject><subject>surgical manipulator control</subject><subject>surgical navigation</subject><subject>Valves</subject><subject>Visual control</subject><subject>Wires</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4Mobk7vHkQKXrx05mfTHMfwx2BjMKfXkLYv0NE2s2kH--_N2BTxEN4LfN43eR-EbgkeE4LV03q1HFNM2ZgxIlSSnKEhUZzEmCfpeeiFoDHDKh2gK-83GFOuMLtEA5aGjhE1RKt3qEvTd65xtet9tHKZ68o8Wpim3PaV6Vwb2XAWZVPWpqr20azZGV_uIJq49kB-mipcVrCtTA41NN01urCm8nBzqiP08fK8nr7F8-XrbDqZxzlTuIstzQrJuaUMMpzbjBWSUEELEooErBgHyUwhGOQ2FYVNwXJFEm5kUmSZTdgIPR5zt6376sF3ui59DlVlGgiraKqIFAmmRAb04R-6cX3bhN9pmirFZXhUBQofqbx13rdg9bYNS7d7TbA--NbBtz741iffYeT-FNxnNRS_Az-CA3B3BEoA-JNHJReJYN_7A4SH</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Tamadon, Izadyar</creator><creator>Sadati, S. M. Hadi</creator><creator>Mamone, Virginia</creator><creator>Ferrari, Vincenzo</creator><creator>Bergeles, Christos</creator><creator>Menciassi, Arianna</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9294-2828</orcidid><orcidid>https://orcid.org/0000-0002-5862-265X</orcidid><orcidid>https://orcid.org/0000-0002-7172-5119</orcidid><orcidid>https://orcid.org/0000-0001-6348-1081</orcidid><orcidid>https://orcid.org/0000-0002-9152-3194</orcidid><orcidid>https://orcid.org/0000-0002-4613-5862</orcidid></search><sort><creationdate>202312</creationdate><title>Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement</title><author>Tamadon, Izadyar ; Sadati, S. M. Hadi ; Mamone, Virginia ; Ferrari, Vincenzo ; Bergeles, Christos ; Menciassi, Arianna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f2bd744f23eb0cfb3d71252d17127e0934e73ad53ecf85df8ef49164a76dbbf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Aorta</topic><topic>Aortic valve surgery</topic><topic>Bending</topic><topic>Cameras</topic><topic>Endoscopy</topic><topic>Gears</topic><topic>Haptic interfaces</topic><topic>Heart surgery</topic><topic>Heart valves</topic><topic>Manipulators</topic><topic>minimally invasive surgery (MIS)</topic><topic>Misalignment</topic><topic>Position errors</topic><topic>Positioning devices (machinery)</topic><topic>Robot arms</topic><topic>robotic surgical endoscopy</topic><topic>Surgery</topic><topic>surgical manipulator control</topic><topic>surgical navigation</topic><topic>Valves</topic><topic>Visual control</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamadon, Izadyar</creatorcontrib><creatorcontrib>Sadati, S. M. Hadi</creatorcontrib><creatorcontrib>Mamone, Virginia</creatorcontrib><creatorcontrib>Ferrari, Vincenzo</creatorcontrib><creatorcontrib>Bergeles, Christos</creatorcontrib><creatorcontrib>Menciassi, Arianna</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamadon, Izadyar</au><au>Sadati, S. M. Hadi</au><au>Mamone, Virginia</au><au>Ferrari, Vincenzo</au><au>Bergeles, Christos</au><au>Menciassi, Arianna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><addtitle>IEEE Trans Robot</addtitle><date>2023-12</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>4500</spage><epage>4519</epage><pages>4500-4519</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38249319</pmid><doi>10.1109/TRO.2023.3315966</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9294-2828</orcidid><orcidid>https://orcid.org/0000-0002-5862-265X</orcidid><orcidid>https://orcid.org/0000-0002-7172-5119</orcidid><orcidid>https://orcid.org/0000-0001-6348-1081</orcidid><orcidid>https://orcid.org/0000-0002-9152-3194</orcidid><orcidid>https://orcid.org/0000-0002-4613-5862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4500-4519 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_10274565 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Aorta Aortic valve surgery Bending Cameras Endoscopy Gears Haptic interfaces Heart surgery Heart valves Manipulators minimally invasive surgery (MIS) Misalignment Position errors Positioning devices (machinery) Robot arms robotic surgical endoscopy Surgery surgical manipulator control surgical navigation Valves Visual control Wires |
title | Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiautonomous%20Robotic%20Manipulator%20for%20Minimally%20Invasive%20Aortic%20Valve%20Replacement&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Tamadon,%20Izadyar&rft.date=2023-12&rft.volume=39&rft.issue=6&rft.spage=4500&rft.epage=4519&rft.pages=4500-4519&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3315966&rft_dat=%3Cproquest_ieee_%3E2899471719%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899471719&rft_id=info:pmid/38249319&rft_ieee_id=10274565&rfr_iscdi=true |