Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement

Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2023-12, Vol.39 (6), p.4500-4519
Hauptverfasser: Tamadon, Izadyar, Sadati, S. M. Hadi, Mamone, Virginia, Ferrari, Vincenzo, Bergeles, Christos, Menciassi, Arianna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4519
container_issue 6
container_start_page 4500
container_title IEEE transactions on robotics
container_volume 39
creator Tamadon, Izadyar
Sadati, S. M. Hadi
Mamone, Virginia
Ferrari, Vincenzo
Bergeles, Christos
Menciassi, Arianna
description Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints.
doi_str_mv 10.1109/TRO.2023.3315966
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10274565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10274565</ieee_id><sourcerecordid>2899471719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f2bd744f23eb0cfb3d71252d17127e0934e73ad53ecf85df8ef49164a76dbbf63</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobk7vHkQKXrx05mfTHMfwx2BjMKfXkLYv0NE2s2kH--_N2BTxEN4LfN43eR-EbgkeE4LV03q1HFNM2ZgxIlSSnKEhUZzEmCfpeeiFoDHDKh2gK-83GFOuMLtEA5aGjhE1RKt3qEvTd65xtet9tHKZ68o8Wpim3PaV6Vwb2XAWZVPWpqr20azZGV_uIJq49kB-mipcVrCtTA41NN01urCm8nBzqiP08fK8nr7F8-XrbDqZxzlTuIstzQrJuaUMMpzbjBWSUEELEooErBgHyUwhGOQ2FYVNwXJFEm5kUmSZTdgIPR5zt6376sF3ui59DlVlGgiraKqIFAmmRAb04R-6cX3bhN9pmirFZXhUBQofqbx13rdg9bYNS7d7TbA--NbBtz741iffYeT-FNxnNRS_Az-CA3B3BEoA-JNHJReJYN_7A4SH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899471719</pqid></control><display><type>article</type><title>Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement</title><source>IEEE Electronic Library (IEL)</source><creator>Tamadon, Izadyar ; Sadati, S. M. Hadi ; Mamone, Virginia ; Ferrari, Vincenzo ; Bergeles, Christos ; Menciassi, Arianna</creator><creatorcontrib>Tamadon, Izadyar ; Sadati, S. M. Hadi ; Mamone, Virginia ; Ferrari, Vincenzo ; Bergeles, Christos ; Menciassi, Arianna</creatorcontrib><description>Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3315966</identifier><identifier>PMID: 38249319</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Aorta ; Aortic valve surgery ; Bending ; Cameras ; Endoscopy ; Gears ; Haptic interfaces ; Heart surgery ; Heart valves ; Manipulators ; minimally invasive surgery (MIS) ; Misalignment ; Position errors ; Positioning devices (machinery) ; Robot arms ; robotic surgical endoscopy ; Surgery ; surgical manipulator control ; surgical navigation ; Valves ; Visual control ; Wires</subject><ispartof>IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4500-4519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f2bd744f23eb0cfb3d71252d17127e0934e73ad53ecf85df8ef49164a76dbbf63</citedby><cites>FETCH-LOGICAL-c390t-f2bd744f23eb0cfb3d71252d17127e0934e73ad53ecf85df8ef49164a76dbbf63</cites><orcidid>0000-0001-9294-2828 ; 0000-0002-5862-265X ; 0000-0002-7172-5119 ; 0000-0001-6348-1081 ; 0000-0002-9152-3194 ; 0000-0002-4613-5862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10274565$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38249319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamadon, Izadyar</creatorcontrib><creatorcontrib>Sadati, S. M. Hadi</creatorcontrib><creatorcontrib>Mamone, Virginia</creatorcontrib><creatorcontrib>Ferrari, Vincenzo</creatorcontrib><creatorcontrib>Bergeles, Christos</creatorcontrib><creatorcontrib>Menciassi, Arianna</creatorcontrib><title>Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><addtitle>IEEE Trans Robot</addtitle><description>Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints.</description><subject>Algorithms</subject><subject>Aorta</subject><subject>Aortic valve surgery</subject><subject>Bending</subject><subject>Cameras</subject><subject>Endoscopy</subject><subject>Gears</subject><subject>Haptic interfaces</subject><subject>Heart surgery</subject><subject>Heart valves</subject><subject>Manipulators</subject><subject>minimally invasive surgery (MIS)</subject><subject>Misalignment</subject><subject>Position errors</subject><subject>Positioning devices (machinery)</subject><subject>Robot arms</subject><subject>robotic surgical endoscopy</subject><subject>Surgery</subject><subject>surgical manipulator control</subject><subject>surgical navigation</subject><subject>Valves</subject><subject>Visual control</subject><subject>Wires</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4Mobk7vHkQKXrx05mfTHMfwx2BjMKfXkLYv0NE2s2kH--_N2BTxEN4LfN43eR-EbgkeE4LV03q1HFNM2ZgxIlSSnKEhUZzEmCfpeeiFoDHDKh2gK-83GFOuMLtEA5aGjhE1RKt3qEvTd65xtet9tHKZ68o8Wpim3PaV6Vwb2XAWZVPWpqr20azZGV_uIJq49kB-mipcVrCtTA41NN01urCm8nBzqiP08fK8nr7F8-XrbDqZxzlTuIstzQrJuaUMMpzbjBWSUEELEooErBgHyUwhGOQ2FYVNwXJFEm5kUmSZTdgIPR5zt6376sF3ui59DlVlGgiraKqIFAmmRAb04R-6cX3bhN9pmirFZXhUBQofqbx13rdg9bYNS7d7TbA--NbBtz741iffYeT-FNxnNRS_Az-CA3B3BEoA-JNHJReJYN_7A4SH</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Tamadon, Izadyar</creator><creator>Sadati, S. M. Hadi</creator><creator>Mamone, Virginia</creator><creator>Ferrari, Vincenzo</creator><creator>Bergeles, Christos</creator><creator>Menciassi, Arianna</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9294-2828</orcidid><orcidid>https://orcid.org/0000-0002-5862-265X</orcidid><orcidid>https://orcid.org/0000-0002-7172-5119</orcidid><orcidid>https://orcid.org/0000-0001-6348-1081</orcidid><orcidid>https://orcid.org/0000-0002-9152-3194</orcidid><orcidid>https://orcid.org/0000-0002-4613-5862</orcidid></search><sort><creationdate>202312</creationdate><title>Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement</title><author>Tamadon, Izadyar ; Sadati, S. M. Hadi ; Mamone, Virginia ; Ferrari, Vincenzo ; Bergeles, Christos ; Menciassi, Arianna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f2bd744f23eb0cfb3d71252d17127e0934e73ad53ecf85df8ef49164a76dbbf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Aorta</topic><topic>Aortic valve surgery</topic><topic>Bending</topic><topic>Cameras</topic><topic>Endoscopy</topic><topic>Gears</topic><topic>Haptic interfaces</topic><topic>Heart surgery</topic><topic>Heart valves</topic><topic>Manipulators</topic><topic>minimally invasive surgery (MIS)</topic><topic>Misalignment</topic><topic>Position errors</topic><topic>Positioning devices (machinery)</topic><topic>Robot arms</topic><topic>robotic surgical endoscopy</topic><topic>Surgery</topic><topic>surgical manipulator control</topic><topic>surgical navigation</topic><topic>Valves</topic><topic>Visual control</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamadon, Izadyar</creatorcontrib><creatorcontrib>Sadati, S. M. Hadi</creatorcontrib><creatorcontrib>Mamone, Virginia</creatorcontrib><creatorcontrib>Ferrari, Vincenzo</creatorcontrib><creatorcontrib>Bergeles, Christos</creatorcontrib><creatorcontrib>Menciassi, Arianna</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamadon, Izadyar</au><au>Sadati, S. M. Hadi</au><au>Mamone, Virginia</au><au>Ferrari, Vincenzo</au><au>Bergeles, Christos</au><au>Menciassi, Arianna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><addtitle>IEEE Trans Robot</addtitle><date>2023-12</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>4500</spage><epage>4519</epage><pages>4500-4519</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38249319</pmid><doi>10.1109/TRO.2023.3315966</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9294-2828</orcidid><orcidid>https://orcid.org/0000-0002-5862-265X</orcidid><orcidid>https://orcid.org/0000-0002-7172-5119</orcidid><orcidid>https://orcid.org/0000-0001-6348-1081</orcidid><orcidid>https://orcid.org/0000-0002-9152-3194</orcidid><orcidid>https://orcid.org/0000-0002-4613-5862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4500-4519
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_10274565
source IEEE Electronic Library (IEL)
subjects Algorithms
Aorta
Aortic valve surgery
Bending
Cameras
Endoscopy
Gears
Haptic interfaces
Heart surgery
Heart valves
Manipulators
minimally invasive surgery (MIS)
Misalignment
Position errors
Positioning devices (machinery)
Robot arms
robotic surgical endoscopy
Surgery
surgical manipulator control
surgical navigation
Valves
Visual control
Wires
title Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiautonomous%20Robotic%20Manipulator%20for%20Minimally%20Invasive%20Aortic%20Valve%20Replacement&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Tamadon,%20Izadyar&rft.date=2023-12&rft.volume=39&rft.issue=6&rft.spage=4500&rft.epage=4519&rft.pages=4500-4519&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3315966&rft_dat=%3Cproquest_ieee_%3E2899471719%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899471719&rft_id=info:pmid/38249319&rft_ieee_id=10274565&rfr_iscdi=true