Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies

The general 3-D aperture coupling problem is formulated in terms of an integral equation for the equivalent magnetic current in the aperture, which is numerically solved by the method of moments. The aperture is characterized by two aperture admittance matrices, one for the exterior region and the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 1990-11, Vol.38 (11), p.1805-1814
Hauptverfasser: Wang, T., Harrington, R.F., Mautz, J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1814
container_issue 11
container_start_page 1805
container_title IEEE transactions on antennas and propagation
container_volume 38
creator Wang, T.
Harrington, R.F.
Mautz, J.R.
description The general 3-D aperture coupling problem is formulated in terms of an integral equation for the equivalent magnetic current in the aperture, which is numerically solved by the method of moments. The aperture is characterized by two aperture admittance matrices, one for the exterior region and the other for the interior region. These two admittance matrices are determined separately but in a similar manner if the pseudo-image method is used. Numerically workable expressions are developed for the two aperture admittance matrices by decomposing each of them into a half-space admittance matrix and a supplementary admittance matrix. The half-space admittance is relatively easy to compute and has been investigated in the literature. The supplementary admittance matrix is expressed in terms of the generalized impedance combining the existing numerical codes for an arbitrarily shaped scatterer and for an arbitrary aperture in a conducting plane, one can obtain a code which is especially designed for an arbitrary aperture in a conducting surface of arbitrary shape.< >
doi_str_mv 10.1109/8.102743
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_102743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>102743</ieee_id><sourcerecordid>25706344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-50efd08e911f494eec09fc28a063aaa2dae737b5449346d3fdd9968ef9d7ac73</originalsourceid><addsrcrecordid>eNqFkL9PAyEUx4nRxFpNnJ1YNC5X4eDuYDRN_ZE0cengdqHwaDHXowI3-N9LvSa6OZEHn_d5vC9C15TMKCXyQcwoKRvOTtCEVpUoyrKkp2hCCBWFLOv3c3QR40cuueB8gtSiA52C36lND8lpHLVKCYLrN9jma6x6g1NQfdy5GJ3vcdoGP2y2WIW1yw_hC6s9hDQEiNj1WPveDDod-tfeOIiX6MyqLsLV8Zyi1dNiNX8plm_Pr_PHZaEZq1NREbCGCJCUWi45gCbS6lIoUjOlVGkUNKxZV5xLxmvDrDFS1gKsNI3SDZuiu1G7D_5zgJja_GENXad68ENsS8E4ERX7H6yaPJLzDN6PoA4-xgC23Qe3ywu3lLSHrFvRjlln9PboVDm_zua8tIu_vGR5LXlQ3oycA4A_uh_JNzR9iMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25706344</pqid></control><display><type>article</type><title>Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, T. ; Harrington, R.F. ; Mautz, J.R.</creator><creatorcontrib>Wang, T. ; Harrington, R.F. ; Mautz, J.R.</creatorcontrib><description>The general 3-D aperture coupling problem is formulated in terms of an integral equation for the equivalent magnetic current in the aperture, which is numerically solved by the method of moments. The aperture is characterized by two aperture admittance matrices, one for the exterior region and the other for the interior region. These two admittance matrices are determined separately but in a similar manner if the pseudo-image method is used. Numerically workable expressions are developed for the two aperture admittance matrices by decomposing each of them into a half-space admittance matrix and a supplementary admittance matrix. The half-space admittance is relatively easy to compute and has been investigated in the literature. The supplementary admittance matrix is expressed in terms of the generalized impedance combining the existing numerical codes for an arbitrarily shaped scatterer and for an arbitrary aperture in a conducting plane, one can obtain a code which is especially designed for an arbitrary aperture in a conducting surface of arbitrary shape.&lt; &gt;</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.102743</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Admittance ; Apertures ; Applied sciences ; Couplings ; Diffraction, scattering, reflection ; Electromagnetic scattering ; Exact sciences and technology ; Integral equations ; Magnetic separation ; Matrix decomposition ; Moment methods ; Radiocommunications ; Radiowave propagation ; Shape ; Surface impedance ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 1990-11, Vol.38 (11), p.1805-1814</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-50efd08e911f494eec09fc28a063aaa2dae737b5449346d3fdd9968ef9d7ac73</citedby><cites>FETCH-LOGICAL-c336t-50efd08e911f494eec09fc28a063aaa2dae737b5449346d3fdd9968ef9d7ac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/102743$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/102743$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19391194$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, T.</creatorcontrib><creatorcontrib>Harrington, R.F.</creatorcontrib><creatorcontrib>Mautz, J.R.</creatorcontrib><title>Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The general 3-D aperture coupling problem is formulated in terms of an integral equation for the equivalent magnetic current in the aperture, which is numerically solved by the method of moments. The aperture is characterized by two aperture admittance matrices, one for the exterior region and the other for the interior region. These two admittance matrices are determined separately but in a similar manner if the pseudo-image method is used. Numerically workable expressions are developed for the two aperture admittance matrices by decomposing each of them into a half-space admittance matrix and a supplementary admittance matrix. The half-space admittance is relatively easy to compute and has been investigated in the literature. The supplementary admittance matrix is expressed in terms of the generalized impedance combining the existing numerical codes for an arbitrarily shaped scatterer and for an arbitrary aperture in a conducting plane, one can obtain a code which is especially designed for an arbitrary aperture in a conducting surface of arbitrary shape.&lt; &gt;</description><subject>Admittance</subject><subject>Apertures</subject><subject>Applied sciences</subject><subject>Couplings</subject><subject>Diffraction, scattering, reflection</subject><subject>Electromagnetic scattering</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Magnetic separation</subject><subject>Matrix decomposition</subject><subject>Moment methods</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Shape</subject><subject>Surface impedance</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkL9PAyEUx4nRxFpNnJ1YNC5X4eDuYDRN_ZE0cengdqHwaDHXowI3-N9LvSa6OZEHn_d5vC9C15TMKCXyQcwoKRvOTtCEVpUoyrKkp2hCCBWFLOv3c3QR40cuueB8gtSiA52C36lND8lpHLVKCYLrN9jma6x6g1NQfdy5GJ3vcdoGP2y2WIW1yw_hC6s9hDQEiNj1WPveDDod-tfeOIiX6MyqLsLV8Zyi1dNiNX8plm_Pr_PHZaEZq1NREbCGCJCUWi45gCbS6lIoUjOlVGkUNKxZV5xLxmvDrDFS1gKsNI3SDZuiu1G7D_5zgJja_GENXad68ENsS8E4ERX7H6yaPJLzDN6PoA4-xgC23Qe3ywu3lLSHrFvRjlln9PboVDm_zua8tIu_vGR5LXlQ3oycA4A_uh_JNzR9iMM</recordid><startdate>19901101</startdate><enddate>19901101</enddate><creator>Wang, T.</creator><creator>Harrington, R.F.</creator><creator>Mautz, J.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19901101</creationdate><title>Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies</title><author>Wang, T. ; Harrington, R.F. ; Mautz, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-50efd08e911f494eec09fc28a063aaa2dae737b5449346d3fdd9968ef9d7ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Admittance</topic><topic>Apertures</topic><topic>Applied sciences</topic><topic>Couplings</topic><topic>Diffraction, scattering, reflection</topic><topic>Electromagnetic scattering</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Magnetic separation</topic><topic>Matrix decomposition</topic><topic>Moment methods</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Shape</topic><topic>Surface impedance</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, T.</creatorcontrib><creatorcontrib>Harrington, R.F.</creatorcontrib><creatorcontrib>Mautz, J.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, T.</au><au>Harrington, R.F.</au><au>Mautz, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1990-11-01</date><risdate>1990</risdate><volume>38</volume><issue>11</issue><spage>1805</spage><epage>1814</epage><pages>1805-1814</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The general 3-D aperture coupling problem is formulated in terms of an integral equation for the equivalent magnetic current in the aperture, which is numerically solved by the method of moments. The aperture is characterized by two aperture admittance matrices, one for the exterior region and the other for the interior region. These two admittance matrices are determined separately but in a similar manner if the pseudo-image method is used. Numerically workable expressions are developed for the two aperture admittance matrices by decomposing each of them into a half-space admittance matrix and a supplementary admittance matrix. The half-space admittance is relatively easy to compute and has been investigated in the literature. The supplementary admittance matrix is expressed in terms of the generalized impedance combining the existing numerical codes for an arbitrarily shaped scatterer and for an arbitrary aperture in a conducting plane, one can obtain a code which is especially designed for an arbitrary aperture in a conducting surface of arbitrary shape.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/8.102743</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 1990-11, Vol.38 (11), p.1805-1814
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_102743
source IEEE Electronic Library (IEL)
subjects Admittance
Apertures
Applied sciences
Couplings
Diffraction, scattering, reflection
Electromagnetic scattering
Exact sciences and technology
Integral equations
Magnetic separation
Matrix decomposition
Moment methods
Radiocommunications
Radiowave propagation
Shape
Surface impedance
Telecommunications
Telecommunications and information theory
title Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20scattering%20from%20and%20transmission%20through%20arbitrary%20apertures%20in%20conducting%20bodies&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Wang,%20T.&rft.date=1990-11-01&rft.volume=38&rft.issue=11&rft.spage=1805&rft.epage=1814&rft.pages=1805-1814&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.102743&rft_dat=%3Cproquest_RIE%3E25706344%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25706344&rft_id=info:pmid/&rft_ieee_id=102743&rfr_iscdi=true