SceneDreamer: Unbounded 3D Scene Generation From 2D Image Collections
In this work, we present SceneDreamer , an unconditional generative model for unbounded 3D scenes, which synthesizes large-scale 3D landscapes from random noise. Our framework is learned from in-the-wild 2D image collections only, without any 3D annotations. At the core of SceneDreamer is a principl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-12, Vol.45 (12), p.15562-15576 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15576 |
---|---|
container_issue | 12 |
container_start_page | 15562 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Chen, Zhaoxi Wang, Guangcong Liu, Ziwei |
description | In this work, we present SceneDreamer , an unconditional generative model for unbounded 3D scenes, which synthesizes large-scale 3D landscapes from random noise. Our framework is learned from in-the-wild 2D image collections only, without any 3D annotations. At the core of SceneDreamer is a principled learning paradigm comprising: 1) an efficient yet expressive 3D scene representation, 2) a generative scene parameterization, and 3) an effective renderer that can leverage the knowledge from 2D images. Our approach begins with an efficient bird's-eye-view (BEV) representation generated from simplex noise, which includes a height field for surface elevation and a semantic field for detailed scene semantics. This BEV scene representation enables: 1) representing a 3D scene with quadratic complexity, 2) disentangled geometry and semantics, and 3) efficient training. Moreover, we propose a novel generative neural hash grid to parameterize the latent space based on 3D positions and scene semantics, aiming to encode generalizable features across various scenes. Lastly, a neural volumetric renderer, learned from 2D image collections through adversarial training, is employed to produce photorealistic images. Extensive experiments demonstrate the effectiveness of SceneDreamer and superiority over state-of-the-art methods in generating vivid yet diverse unbounded 3D worlds. |
doi_str_mv | 10.1109/TPAMI.2023.3321857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10269790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10269790</ieee_id><sourcerecordid>2872808173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-f36d9182dafa1a87eb14246989e4936b3d3f25552c63b7a19a02fb23e3ffac483</originalsourceid><addsrcrecordid>eNpdkLtOAzEQRS0EIiHwA4hiJRqaDfbMPmy6KC8iBYFEUlve3TFKtI9gZwv-ns2jQDQzxT13NDqM3Qs-FIKr59XH6G0xBA44RAQh4_SC9UEkPFSg4JL1uUgglBJkj914v-VcRDHHa9bDNJVSKOyz6WdONU0cmYrcS7Cus6atCyoCnATHKJh3w5n9pqmDmWuqACbBojJfFIybsqT8EPhbdmVN6enuvAdsPZuuxq_h8n2-GI-WYY6g9qHFpFBCQmGsEUamlIkIokRJRZHCJMMCLcRxDHmCWWqEMhxsBkhorckjiQP2dLq7c813S36vq43PqSxNTU3rNcgUJJcixQ59_Idum9bV3XcdJeMkjmIZdRScqNw13juyeuc2lXE_WnB9kKyPkvVBsj5L7koPp9KGiP4UIFGp4vgLDDx0Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885654584</pqid></control><display><type>article</type><title>SceneDreamer: Unbounded 3D Scene Generation From 2D Image Collections</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Zhaoxi ; Wang, Guangcong ; Liu, Ziwei</creator><creatorcontrib>Chen, Zhaoxi ; Wang, Guangcong ; Liu, Ziwei</creatorcontrib><description>In this work, we present SceneDreamer , an unconditional generative model for unbounded 3D scenes, which synthesizes large-scale 3D landscapes from random noise. Our framework is learned from in-the-wild 2D image collections only, without any 3D annotations. At the core of SceneDreamer is a principled learning paradigm comprising: 1) an efficient yet expressive 3D scene representation, 2) a generative scene parameterization, and 3) an effective renderer that can leverage the knowledge from 2D images. Our approach begins with an efficient bird's-eye-view (BEV) representation generated from simplex noise, which includes a height field for surface elevation and a semantic field for detailed scene semantics. This BEV scene representation enables: 1) representing a 3D scene with quadratic complexity, 2) disentangled geometry and semantics, and 3) efficient training. Moreover, we propose a novel generative neural hash grid to parameterize the latent space based on 3D positions and scene semantics, aiming to encode generalizable features across various scenes. Lastly, a neural volumetric renderer, learned from 2D image collections through adversarial training, is employed to produce photorealistic images. Extensive experiments demonstrate the effectiveness of SceneDreamer and superiority over state-of-the-art methods in generating vivid yet diverse unbounded 3D worlds.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 2160-9292</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2023.3321857</identifier><identifier>PMID: 37788193</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D generative model ; Annotations ; Cameras ; GAN ; Geometry ; neural rendering ; Parameterization ; Random noise ; Renderers ; Rendering (computer graphics) ; Representations ; Scene generation ; Semantics ; Solid modeling ; Three dimensional models ; Three-dimensional displays ; Training ; unbounded scene generation</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-12, Vol.45 (12), p.15562-15576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-f36d9182dafa1a87eb14246989e4936b3d3f25552c63b7a19a02fb23e3ffac483</citedby><cites>FETCH-LOGICAL-c329t-f36d9182dafa1a87eb14246989e4936b3d3f25552c63b7a19a02fb23e3ffac483</cites><orcidid>0000-0002-4220-5958 ; 0000-0002-6627-814X ; 0000-0003-3998-7044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10269790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10269790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Zhaoxi</creatorcontrib><creatorcontrib>Wang, Guangcong</creatorcontrib><creatorcontrib>Liu, Ziwei</creatorcontrib><title>SceneDreamer: Unbounded 3D Scene Generation From 2D Image Collections</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>In this work, we present SceneDreamer , an unconditional generative model for unbounded 3D scenes, which synthesizes large-scale 3D landscapes from random noise. Our framework is learned from in-the-wild 2D image collections only, without any 3D annotations. At the core of SceneDreamer is a principled learning paradigm comprising: 1) an efficient yet expressive 3D scene representation, 2) a generative scene parameterization, and 3) an effective renderer that can leverage the knowledge from 2D images. Our approach begins with an efficient bird's-eye-view (BEV) representation generated from simplex noise, which includes a height field for surface elevation and a semantic field for detailed scene semantics. This BEV scene representation enables: 1) representing a 3D scene with quadratic complexity, 2) disentangled geometry and semantics, and 3) efficient training. Moreover, we propose a novel generative neural hash grid to parameterize the latent space based on 3D positions and scene semantics, aiming to encode generalizable features across various scenes. Lastly, a neural volumetric renderer, learned from 2D image collections through adversarial training, is employed to produce photorealistic images. Extensive experiments demonstrate the effectiveness of SceneDreamer and superiority over state-of-the-art methods in generating vivid yet diverse unbounded 3D worlds.</description><subject>3D generative model</subject><subject>Annotations</subject><subject>Cameras</subject><subject>GAN</subject><subject>Geometry</subject><subject>neural rendering</subject><subject>Parameterization</subject><subject>Random noise</subject><subject>Renderers</subject><subject>Rendering (computer graphics)</subject><subject>Representations</subject><subject>Scene generation</subject><subject>Semantics</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>unbounded scene generation</subject><issn>0162-8828</issn><issn>2160-9292</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOAzEQRS0EIiHwA4hiJRqaDfbMPmy6KC8iBYFEUlve3TFKtI9gZwv-ns2jQDQzxT13NDqM3Qs-FIKr59XH6G0xBA44RAQh4_SC9UEkPFSg4JL1uUgglBJkj914v-VcRDHHa9bDNJVSKOyz6WdONU0cmYrcS7Cus6atCyoCnATHKJh3w5n9pqmDmWuqACbBojJfFIybsqT8EPhbdmVN6enuvAdsPZuuxq_h8n2-GI-WYY6g9qHFpFBCQmGsEUamlIkIokRJRZHCJMMCLcRxDHmCWWqEMhxsBkhorckjiQP2dLq7c813S36vq43PqSxNTU3rNcgUJJcixQ59_Idum9bV3XcdJeMkjmIZdRScqNw13juyeuc2lXE_WnB9kKyPkvVBsj5L7koPp9KGiP4UIFGp4vgLDDx0Pw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chen, Zhaoxi</creator><creator>Wang, Guangcong</creator><creator>Liu, Ziwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4220-5958</orcidid><orcidid>https://orcid.org/0000-0002-6627-814X</orcidid><orcidid>https://orcid.org/0000-0003-3998-7044</orcidid></search><sort><creationdate>20231201</creationdate><title>SceneDreamer: Unbounded 3D Scene Generation From 2D Image Collections</title><author>Chen, Zhaoxi ; Wang, Guangcong ; Liu, Ziwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-f36d9182dafa1a87eb14246989e4936b3d3f25552c63b7a19a02fb23e3ffac483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D generative model</topic><topic>Annotations</topic><topic>Cameras</topic><topic>GAN</topic><topic>Geometry</topic><topic>neural rendering</topic><topic>Parameterization</topic><topic>Random noise</topic><topic>Renderers</topic><topic>Rendering (computer graphics)</topic><topic>Representations</topic><topic>Scene generation</topic><topic>Semantics</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>unbounded scene generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhaoxi</creatorcontrib><creatorcontrib>Wang, Guangcong</creatorcontrib><creatorcontrib>Liu, Ziwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Zhaoxi</au><au>Wang, Guangcong</au><au>Liu, Ziwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SceneDreamer: Unbounded 3D Scene Generation From 2D Image Collections</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>45</volume><issue>12</issue><spage>15562</spage><epage>15576</epage><pages>15562-15576</pages><issn>0162-8828</issn><eissn>2160-9292</eissn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>In this work, we present SceneDreamer , an unconditional generative model for unbounded 3D scenes, which synthesizes large-scale 3D landscapes from random noise. Our framework is learned from in-the-wild 2D image collections only, without any 3D annotations. At the core of SceneDreamer is a principled learning paradigm comprising: 1) an efficient yet expressive 3D scene representation, 2) a generative scene parameterization, and 3) an effective renderer that can leverage the knowledge from 2D images. Our approach begins with an efficient bird's-eye-view (BEV) representation generated from simplex noise, which includes a height field for surface elevation and a semantic field for detailed scene semantics. This BEV scene representation enables: 1) representing a 3D scene with quadratic complexity, 2) disentangled geometry and semantics, and 3) efficient training. Moreover, we propose a novel generative neural hash grid to parameterize the latent space based on 3D positions and scene semantics, aiming to encode generalizable features across various scenes. Lastly, a neural volumetric renderer, learned from 2D image collections through adversarial training, is employed to produce photorealistic images. Extensive experiments demonstrate the effectiveness of SceneDreamer and superiority over state-of-the-art methods in generating vivid yet diverse unbounded 3D worlds.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>37788193</pmid><doi>10.1109/TPAMI.2023.3321857</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4220-5958</orcidid><orcidid>https://orcid.org/0000-0002-6627-814X</orcidid><orcidid>https://orcid.org/0000-0003-3998-7044</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-12, Vol.45 (12), p.15562-15576 |
issn | 0162-8828 2160-9292 1939-3539 |
language | eng |
recordid | cdi_ieee_primary_10269790 |
source | IEEE Electronic Library (IEL) |
subjects | 3D generative model Annotations Cameras GAN Geometry neural rendering Parameterization Random noise Renderers Rendering (computer graphics) Representations Scene generation Semantics Solid modeling Three dimensional models Three-dimensional displays Training unbounded scene generation |
title | SceneDreamer: Unbounded 3D Scene Generation From 2D Image Collections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SceneDreamer:%20Unbounded%203D%20Scene%20Generation%20From%202D%20Image%20Collections&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Chen,%20Zhaoxi&rft.date=2023-12-01&rft.volume=45&rft.issue=12&rft.spage=15562&rft.epage=15576&rft.pages=15562-15576&rft.issn=0162-8828&rft.eissn=2160-9292&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3321857&rft_dat=%3Cproquest_RIE%3E2872808173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885654584&rft_id=info:pmid/37788193&rft_ieee_id=10269790&rfr_iscdi=true |