Image segmentation and classification using color features

Color provides a wealth of information for interpretation of image content. The increased availability of affordable digital color cameras has created the opportunity to explore the degree to which color is useful in computer vision. This paper shows that a system for image segmentation and classifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stachowicz, M.S., Lemke, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 57
container_title
container_volume
creator Stachowicz, M.S.
Lemke, D.
description Color provides a wealth of information for interpretation of image content. The increased availability of affordable digital color cameras has created the opportunity to explore the degree to which color is useful in computer vision. This paper shows that a system for image segmentation and classification can be created using color as the primary feature. This system is comprised of two phases: segmentation and classification. In the first step, an image is searched with a blob detection algorithm to determine the location of any possible foreground elements. These areas are extracted from the image to be used in the next step. Classification is done using a set of eight color features that are optimally selected for each database. The appropriate feature vector is created for each foreground area removed from the original image. The vector is then compared to a preconstructed database to be identified. For this paper USA postage stamps on envelopes were used as the test cases.
doi_str_mv 10.1109/VIPROM.2002.1026628
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1026628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1026628</ieee_id><sourcerecordid>1026628</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-59e5bc74416860ca32662efc00edae721afef47ea0b38fdb89ec9f077b599a633</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0JL6C7LRD9i9kizJ6q6EPgwpKaXJNlzLV0bFj2I5i_59W5LZDJzFcIaxtYBCCHD3h_r9Y_dWSABZCJDGyOqKZc5WTisLZQlC37AspS_4i3JWgL1lD_WAHfFE3UDjgkucRo5jy32PKcUQ_RmdUhw77qd-mnkgXE4zpTt2HbBPlF16xfbPT5-b13y7e6k3j9s8CquXXDvSjbdlKUxlwKP6N6PgAahFslJgoFBaQmhUFdqmcuRdAGsb7RwapVZsfd6NRHT8nuOA88_x8lD9Ap4dR8k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image segmentation and classification using color features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stachowicz, M.S. ; Lemke, D.</creator><creatorcontrib>Stachowicz, M.S. ; Lemke, D.</creatorcontrib><description>Color provides a wealth of information for interpretation of image content. The increased availability of affordable digital color cameras has created the opportunity to explore the degree to which color is useful in computer vision. This paper shows that a system for image segmentation and classification can be created using color as the primary feature. This system is comprised of two phases: segmentation and classification. In the first step, an image is searched with a blob detection algorithm to determine the location of any possible foreground elements. These areas are extracted from the image to be used in the next step. Classification is done using a set of eight color features that are optimally selected for each database. The appropriate feature vector is created for each foreground area removed from the original image. The vector is then compared to a preconstructed database to be identified. For this paper USA postage stamps on envelopes were used as the test cases.</description><identifier>ISBN: 9789537044015</identifier><identifier>ISBN: 9537044017</identifier><identifier>DOI: 10.1109/VIPROM.2002.1026628</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Detection algorithms ; Digital cameras ; Image databases ; Image recognition ; Image segmentation ; Intelligent systems ; Laboratories ; Spatial databases ; System testing</subject><ispartof>International Symposium on VIPromCom Video/Image Processing and Multimedia Communications, 2002, p.57-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1026628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1026628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stachowicz, M.S.</creatorcontrib><creatorcontrib>Lemke, D.</creatorcontrib><title>Image segmentation and classification using color features</title><title>International Symposium on VIPromCom Video/Image Processing and Multimedia Communications</title><addtitle>VIPROM</addtitle><description>Color provides a wealth of information for interpretation of image content. The increased availability of affordable digital color cameras has created the opportunity to explore the degree to which color is useful in computer vision. This paper shows that a system for image segmentation and classification can be created using color as the primary feature. This system is comprised of two phases: segmentation and classification. In the first step, an image is searched with a blob detection algorithm to determine the location of any possible foreground elements. These areas are extracted from the image to be used in the next step. Classification is done using a set of eight color features that are optimally selected for each database. The appropriate feature vector is created for each foreground area removed from the original image. The vector is then compared to a preconstructed database to be identified. For this paper USA postage stamps on envelopes were used as the test cases.</description><subject>Computer vision</subject><subject>Detection algorithms</subject><subject>Digital cameras</subject><subject>Image databases</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Intelligent systems</subject><subject>Laboratories</subject><subject>Spatial databases</subject><subject>System testing</subject><isbn>9789537044015</isbn><isbn>9537044017</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWl0JL6C7LRD9i9kizJ6q6EPgwpKaXJNlzLV0bFj2I5i_59W5LZDJzFcIaxtYBCCHD3h_r9Y_dWSABZCJDGyOqKZc5WTisLZQlC37AspS_4i3JWgL1lD_WAHfFE3UDjgkucRo5jy32PKcUQ_RmdUhw77qd-mnkgXE4zpTt2HbBPlF16xfbPT5-b13y7e6k3j9s8CquXXDvSjbdlKUxlwKP6N6PgAahFslJgoFBaQmhUFdqmcuRdAGsb7RwapVZsfd6NRHT8nuOA88_x8lD9Ap4dR8k</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Stachowicz, M.S.</creator><creator>Lemke, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Image segmentation and classification using color features</title><author>Stachowicz, M.S. ; Lemke, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-59e5bc74416860ca32662efc00edae721afef47ea0b38fdb89ec9f077b599a633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computer vision</topic><topic>Detection algorithms</topic><topic>Digital cameras</topic><topic>Image databases</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Intelligent systems</topic><topic>Laboratories</topic><topic>Spatial databases</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Stachowicz, M.S.</creatorcontrib><creatorcontrib>Lemke, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stachowicz, M.S.</au><au>Lemke, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image segmentation and classification using color features</atitle><btitle>International Symposium on VIPromCom Video/Image Processing and Multimedia Communications</btitle><stitle>VIPROM</stitle><date>2002</date><risdate>2002</risdate><spage>57</spage><epage>64</epage><pages>57-64</pages><isbn>9789537044015</isbn><isbn>9537044017</isbn><abstract>Color provides a wealth of information for interpretation of image content. The increased availability of affordable digital color cameras has created the opportunity to explore the degree to which color is useful in computer vision. This paper shows that a system for image segmentation and classification can be created using color as the primary feature. This system is comprised of two phases: segmentation and classification. In the first step, an image is searched with a blob detection algorithm to determine the location of any possible foreground elements. These areas are extracted from the image to be used in the next step. Classification is done using a set of eight color features that are optimally selected for each database. The appropriate feature vector is created for each foreground area removed from the original image. The vector is then compared to a preconstructed database to be identified. For this paper USA postage stamps on envelopes were used as the test cases.</abstract><pub>IEEE</pub><doi>10.1109/VIPROM.2002.1026628</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9789537044015
ispartof International Symposium on VIPromCom Video/Image Processing and Multimedia Communications, 2002, p.57-64
issn
language eng
recordid cdi_ieee_primary_1026628
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Detection algorithms
Digital cameras
Image databases
Image recognition
Image segmentation
Intelligent systems
Laboratories
Spatial databases
System testing
title Image segmentation and classification using color features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20segmentation%20and%20classification%20using%20color%20features&rft.btitle=International%20Symposium%20on%20VIPromCom%20Video/Image%20Processing%20and%20Multimedia%20Communications&rft.au=Stachowicz,%20M.S.&rft.date=2002&rft.spage=57&rft.epage=64&rft.pages=57-64&rft.isbn=9789537044015&rft.isbn_list=9537044017&rft_id=info:doi/10.1109/VIPROM.2002.1026628&rft_dat=%3Cieee_6IE%3E1026628%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1026628&rfr_iscdi=true