TEmoX: Classification of Textual Emotion Using Ensemble of Transformers

Textual emotion classification (TxtEC) refers to the classification of emotion expressed by individuals in textual form. The widespread use of the Internet and numerous Web 2.0 applications has emerged in an expeditious growth of textual interactions. However, determining emotion from texts is chall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.109803-109818
Hauptverfasser: Das, Avishek, Hoque, Mohammed Moshiul, Sharif, Omar, Dewan, M. Ali Akber, Siddique, Nazmul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109818
container_issue
container_start_page 109803
container_title IEEE access
container_volume 11
creator Das, Avishek
Hoque, Mohammed Moshiul
Sharif, Omar
Dewan, M. Ali Akber
Siddique, Nazmul
description Textual emotion classification (TxtEC) refers to the classification of emotion expressed by individuals in textual form. The widespread use of the Internet and numerous Web 2.0 applications has emerged in an expeditious growth of textual interactions. However, determining emotion from texts is challenging due to their unorganized, unstructured, and disordered forms. While research in textual emotion classification has made considerable breakthroughs for high-resource languages, it is yet challenging for low-resource languages like Bengali. This work presents a transformer-based ensemble approach (called TEmoX) to categorize Bengali textual data into six integral emotions: joy, anger, disgust, fear, sadness, and surprise. This research investigates 38 classifier models developed using four machine learning LR, RF, MNB, SVM, three deep-learning CNN, BiLSTM, CNN+BiLSTM, five transformer-based m-BERT, XLM-R, Bangla-BERT-1, Bangla-BERT-2, and Indic-DistilBERT techniques with two ensemble strategies and three embedding techniques. The developed models are trained, tuned, and tested on the three versions of the Bengali emotion text corpus BEmoC-v1, BEmoC-v2, BEmoC-v3. The experimental outcomes reveal that the weighted ensemble of four transformer models En-22: Bangla-BERT-2, XLM-R, Indic-DistilBERT, Bangla-BERT-1 outperforms the baseline models and existing methods by providing the maximum weighted F1 -score (80.24%) on BEmoC-v3. The dataset, models, and fractions of codes are available at https://github.com/avishek-018/TEmoX .
doi_str_mv 10.1109/ACCESS.2023.3319455
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10264097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10264097</ieee_id><doaj_id>oai_doaj_org_article_cd447683baf24827bca6d4cd7c5a3e0b</doaj_id><sourcerecordid>2876676688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-94d29049a549ab2823ecb18d3182562eab307fc77244e588d99bd73e99f2b3cd3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLg0P0CfSj43JmvNolvo9Q5GPiwDXwL-eroaJuZdKD_3mwdsnDDDSfnnFxykuQJghmEgL_Oy7Jar2cIIDzDGHKS5zfJBMGCZzjHxe3V-T6ZhrAHcbEI5XSSLDZV577e0rKVITR1o-XQuD51dbqxP8NRtmm8P0Pb0PS7tOqD7VRrzwwv-1A731kfHpO7WrbBTi_9Idm-V5vyI1t9LpblfJVpAviQcWIQB4TLPG6FGMJWK8gMhgzlBbJSYUBrTSkixOaMGc6VodhyXiOFtcEPyXL0NU7uxcE3nfS_wslGnAHnd0L6odGtFdoQQguGlawRYYgqLQtDtKE6l9gCFb1eRq-Dd99HGwaxd0ffx_EFYrQoYjEWWXhkae9C8Lb-fxUCcQpAjAGIUwDiEkBUPY-qxlp7pUBF_AeK_wAa7YDR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876676688</pqid></control><display><type>article</type><title>TEmoX: Classification of Textual Emotion Using Ensemble of Transformers</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Das, Avishek ; Hoque, Mohammed Moshiul ; Sharif, Omar ; Dewan, M. Ali Akber ; Siddique, Nazmul</creator><creatorcontrib>Das, Avishek ; Hoque, Mohammed Moshiul ; Sharif, Omar ; Dewan, M. Ali Akber ; Siddique, Nazmul</creatorcontrib><description>Textual emotion classification (TxtEC) refers to the classification of emotion expressed by individuals in textual form. The widespread use of the Internet and numerous Web 2.0 applications has emerged in an expeditious growth of textual interactions. However, determining emotion from texts is challenging due to their unorganized, unstructured, and disordered forms. While research in textual emotion classification has made considerable breakthroughs for high-resource languages, it is yet challenging for low-resource languages like Bengali. This work presents a transformer-based ensemble approach (called TEmoX) to categorize Bengali textual data into six integral emotions: joy, anger, disgust, fear, sadness, and surprise. This research investigates 38 classifier models developed using four machine learning LR, RF, MNB, SVM, three deep-learning CNN, BiLSTM, CNN+BiLSTM, five transformer-based m-BERT, XLM-R, Bangla-BERT-1, Bangla-BERT-2, and Indic-DistilBERT techniques with two ensemble strategies and three embedding techniques. The developed models are trained, tuned, and tested on the three versions of the Bengali emotion text corpus BEmoC-v1, BEmoC-v2, BEmoC-v3. The experimental outcomes reveal that the weighted ensemble of four transformer models En-22: Bangla-BERT-2, XLM-R, Indic-DistilBERT, Bangla-BERT-1 outperforms the baseline models and existing methods by providing the maximum weighted &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;F1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score (80.24%) on BEmoC-v3. The dataset, models, and fractions of codes are available at https://github.com/avishek-018/TEmoX .</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3319455</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bengali emotion text corpus ; Blogs ; Classification ; Deep learning ; Emotion recognition ; Emotions ; ensemble of transformers ; Languages ; Machine learning ; Natural language processing ; Radio frequency ; Social networking (online) ; Support vector machines ; Task analysis ; Text categorization ; text classification ; textual emotion classification ; Transformers ; Video on demand</subject><ispartof>IEEE access, 2023, Vol.11, p.109803-109818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-94d29049a549ab2823ecb18d3182562eab307fc77244e588d99bd73e99f2b3cd3</citedby><cites>FETCH-LOGICAL-c409t-94d29049a549ab2823ecb18d3182562eab307fc77244e588d99bd73e99f2b3cd3</cites><orcidid>0000-0001-6347-7509 ; 0000-0001-8806-708X ; 0000-0002-0642-2357 ; 0000-0002-1589-8322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10264097$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Das, Avishek</creatorcontrib><creatorcontrib>Hoque, Mohammed Moshiul</creatorcontrib><creatorcontrib>Sharif, Omar</creatorcontrib><creatorcontrib>Dewan, M. Ali Akber</creatorcontrib><creatorcontrib>Siddique, Nazmul</creatorcontrib><title>TEmoX: Classification of Textual Emotion Using Ensemble of Transformers</title><title>IEEE access</title><addtitle>Access</addtitle><description>Textual emotion classification (TxtEC) refers to the classification of emotion expressed by individuals in textual form. The widespread use of the Internet and numerous Web 2.0 applications has emerged in an expeditious growth of textual interactions. However, determining emotion from texts is challenging due to their unorganized, unstructured, and disordered forms. While research in textual emotion classification has made considerable breakthroughs for high-resource languages, it is yet challenging for low-resource languages like Bengali. This work presents a transformer-based ensemble approach (called TEmoX) to categorize Bengali textual data into six integral emotions: joy, anger, disgust, fear, sadness, and surprise. This research investigates 38 classifier models developed using four machine learning LR, RF, MNB, SVM, three deep-learning CNN, BiLSTM, CNN+BiLSTM, five transformer-based m-BERT, XLM-R, Bangla-BERT-1, Bangla-BERT-2, and Indic-DistilBERT techniques with two ensemble strategies and three embedding techniques. The developed models are trained, tuned, and tested on the three versions of the Bengali emotion text corpus BEmoC-v1, BEmoC-v2, BEmoC-v3. The experimental outcomes reveal that the weighted ensemble of four transformer models En-22: Bangla-BERT-2, XLM-R, Indic-DistilBERT, Bangla-BERT-1 outperforms the baseline models and existing methods by providing the maximum weighted &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;F1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score (80.24%) on BEmoC-v3. The dataset, models, and fractions of codes are available at https://github.com/avishek-018/TEmoX .</description><subject>Bengali emotion text corpus</subject><subject>Blogs</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>ensemble of transformers</subject><subject>Languages</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Radio frequency</subject><subject>Social networking (online)</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Text categorization</subject><subject>text classification</subject><subject>textual emotion classification</subject><subject>Transformers</subject><subject>Video on demand</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLg0P0CfSj43JmvNolvo9Q5GPiwDXwL-eroaJuZdKD_3mwdsnDDDSfnnFxykuQJghmEgL_Oy7Jar2cIIDzDGHKS5zfJBMGCZzjHxe3V-T6ZhrAHcbEI5XSSLDZV577e0rKVITR1o-XQuD51dbqxP8NRtmm8P0Pb0PS7tOqD7VRrzwwv-1A731kfHpO7WrbBTi_9Idm-V5vyI1t9LpblfJVpAviQcWIQB4TLPG6FGMJWK8gMhgzlBbJSYUBrTSkixOaMGc6VodhyXiOFtcEPyXL0NU7uxcE3nfS_wslGnAHnd0L6odGtFdoQQguGlawRYYgqLQtDtKE6l9gCFb1eRq-Dd99HGwaxd0ffx_EFYrQoYjEWWXhkae9C8Lb-fxUCcQpAjAGIUwDiEkBUPY-qxlp7pUBF_AeK_wAa7YDR</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Das, Avishek</creator><creator>Hoque, Mohammed Moshiul</creator><creator>Sharif, Omar</creator><creator>Dewan, M. Ali Akber</creator><creator>Siddique, Nazmul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6347-7509</orcidid><orcidid>https://orcid.org/0000-0001-8806-708X</orcidid><orcidid>https://orcid.org/0000-0002-0642-2357</orcidid><orcidid>https://orcid.org/0000-0002-1589-8322</orcidid></search><sort><creationdate>2023</creationdate><title>TEmoX: Classification of Textual Emotion Using Ensemble of Transformers</title><author>Das, Avishek ; Hoque, Mohammed Moshiul ; Sharif, Omar ; Dewan, M. Ali Akber ; Siddique, Nazmul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-94d29049a549ab2823ecb18d3182562eab307fc77244e588d99bd73e99f2b3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bengali emotion text corpus</topic><topic>Blogs</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>ensemble of transformers</topic><topic>Languages</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Radio frequency</topic><topic>Social networking (online)</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Text categorization</topic><topic>text classification</topic><topic>textual emotion classification</topic><topic>Transformers</topic><topic>Video on demand</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Avishek</creatorcontrib><creatorcontrib>Hoque, Mohammed Moshiul</creatorcontrib><creatorcontrib>Sharif, Omar</creatorcontrib><creatorcontrib>Dewan, M. Ali Akber</creatorcontrib><creatorcontrib>Siddique, Nazmul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Avishek</au><au>Hoque, Mohammed Moshiul</au><au>Sharif, Omar</au><au>Dewan, M. Ali Akber</au><au>Siddique, Nazmul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TEmoX: Classification of Textual Emotion Using Ensemble of Transformers</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>109803</spage><epage>109818</epage><pages>109803-109818</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Textual emotion classification (TxtEC) refers to the classification of emotion expressed by individuals in textual form. The widespread use of the Internet and numerous Web 2.0 applications has emerged in an expeditious growth of textual interactions. However, determining emotion from texts is challenging due to their unorganized, unstructured, and disordered forms. While research in textual emotion classification has made considerable breakthroughs for high-resource languages, it is yet challenging for low-resource languages like Bengali. This work presents a transformer-based ensemble approach (called TEmoX) to categorize Bengali textual data into six integral emotions: joy, anger, disgust, fear, sadness, and surprise. This research investigates 38 classifier models developed using four machine learning LR, RF, MNB, SVM, three deep-learning CNN, BiLSTM, CNN+BiLSTM, five transformer-based m-BERT, XLM-R, Bangla-BERT-1, Bangla-BERT-2, and Indic-DistilBERT techniques with two ensemble strategies and three embedding techniques. The developed models are trained, tuned, and tested on the three versions of the Bengali emotion text corpus BEmoC-v1, BEmoC-v2, BEmoC-v3. The experimental outcomes reveal that the weighted ensemble of four transformer models En-22: Bangla-BERT-2, XLM-R, Indic-DistilBERT, Bangla-BERT-1 outperforms the baseline models and existing methods by providing the maximum weighted &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;F1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score (80.24%) on BEmoC-v3. The dataset, models, and fractions of codes are available at https://github.com/avishek-018/TEmoX .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3319455</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6347-7509</orcidid><orcidid>https://orcid.org/0000-0001-8806-708X</orcidid><orcidid>https://orcid.org/0000-0002-0642-2357</orcidid><orcidid>https://orcid.org/0000-0002-1589-8322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.109803-109818
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10264097
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Bengali emotion text corpus
Blogs
Classification
Deep learning
Emotion recognition
Emotions
ensemble of transformers
Languages
Machine learning
Natural language processing
Radio frequency
Social networking (online)
Support vector machines
Task analysis
Text categorization
text classification
textual emotion classification
Transformers
Video on demand
title TEmoX: Classification of Textual Emotion Using Ensemble of Transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TEmoX:%20Classification%20of%20Textual%20Emotion%20Using%20Ensemble%20of%20Transformers&rft.jtitle=IEEE%20access&rft.au=Das,%20Avishek&rft.date=2023&rft.volume=11&rft.spage=109803&rft.epage=109818&rft.pages=109803-109818&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3319455&rft_dat=%3Cproquest_ieee_%3E2876676688%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876676688&rft_id=info:pmid/&rft_ieee_id=10264097&rft_doaj_id=oai_doaj_org_article_cd447683baf24827bca6d4cd7c5a3e0b&rfr_iscdi=true