Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph

Industrial equipment failure diagnosis is a crucial issue that impacts the national industrial manufacturing level, economic cycle development, and sustainable technological advancement. A multimodal knowledge graph (MMKG)-based intelligent diagnostic model for industrial equipment fault is proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-11, Vol.23 (21), p.26269-26278
Hauptverfasser: Wu, Yuezhong, Liu, Fumin, Wan, Lanjun, Wang, Zhongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26278
container_issue 21
container_start_page 26269
container_title IEEE sensors journal
container_volume 23
creator Wu, Yuezhong
Liu, Fumin
Wan, Lanjun
Wang, Zhongmei
description Industrial equipment failure diagnosis is a crucial issue that impacts the national industrial manufacturing level, economic cycle development, and sustainable technological advancement. A multimodal knowledge graph (MMKG)-based intelligent diagnostic model for industrial equipment fault is proposed to address the issues of insufficient and inadequate fault data samples encountered when using a single-mode model for fault diagnosis in existing industrial equipment. This model does not require extensive data learning for equipment fault diagnosis in complex industrial scenarios. The model utilizes an improved faster region with CNN (Faster RCNN) features the object detection module to extract visual information feature vectors of semiordered main and nonmain objects. These feature vectors are then mapped to entity, attribute, and relationship vectors in a knowledge graph using cosine similarity for feature correspondence mapping. The semantic matching inference is performed based on this mapping, resulting in a set of fault triplets. Finally, the bidirectional and autoregressive transformers (BARTs) text generation model processes this triplet set to generate fault diagnosis texts. Experimental results demonstrate that the improved Faster RCNN object detection model achieves a 1.2% increase in confidence when trained with small training datasets. The accuracy of generated fault description texts reaches approximately 98% compared to standard texts. The model presented in this article addresses the challenge of diagnosing faults in industrial equipment, particularly in complex scenarios with limited data, such as substations. It enhances the target detection model to effectively extract visual features even when data is scarce. Additionally, it utilizes an MMKG to enable interpretable intelligent decision-making.
doi_str_mv 10.1109/JSEN.2023.3316473
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10261436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10261436</ieee_id><sourcerecordid>2884898863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-e482f56093e71d40f94a19f26a4701a83b6ec08ae44e866df199d51655e31ed63</originalsourceid><addsrcrecordid>eNpNkEFLwzAUx4MoOKcfQPAQ8NyZNGmaHHVuc7rpQQVvITavM6NratIifntbtoOn94f3-78HP4QuKZlQStTN4-vseZKSlE0Yo4Ln7AiNaJbJhOZcHg-ZkYSz_OMUncW4JYSqPMtHSC_rFqrKbaBu8dx0VYvvndnUPrauwGtvocKlD3hZ2y62wZkKz7471-wG_s5EsNjXeN333M7bfvtU-58K7AbwIpjm6xydlKaKcHGYY_Q-n71NH5LVy2I5vV0lRap4mwCXaZkJohjk1HJSKm6oKlNheE6okexTQEGkAc5BCmFLqpTNqMgyYBSsYGN0vb_bBP_dQWz11neh7l_qVEoulZSC9RTdU0XwMQYodRPczoRfTYkePOrBox486oPHvnO17zgA-MengnIm2B8Bam7d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884898863</pqid></control><display><type>article</type><title>Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Yuezhong ; Liu, Fumin ; Wan, Lanjun ; Wang, Zhongmei</creator><creatorcontrib>Wu, Yuezhong ; Liu, Fumin ; Wan, Lanjun ; Wang, Zhongmei</creatorcontrib><description>Industrial equipment failure diagnosis is a crucial issue that impacts the national industrial manufacturing level, economic cycle development, and sustainable technological advancement. A multimodal knowledge graph (MMKG)-based intelligent diagnostic model for industrial equipment fault is proposed to address the issues of insufficient and inadequate fault data samples encountered when using a single-mode model for fault diagnosis in existing industrial equipment. This model does not require extensive data learning for equipment fault diagnosis in complex industrial scenarios. The model utilizes an improved faster region with CNN (Faster RCNN) features the object detection module to extract visual information feature vectors of semiordered main and nonmain objects. These feature vectors are then mapped to entity, attribute, and relationship vectors in a knowledge graph using cosine similarity for feature correspondence mapping. The semantic matching inference is performed based on this mapping, resulting in a set of fault triplets. Finally, the bidirectional and autoregressive transformers (BARTs) text generation model processes this triplet set to generate fault diagnosis texts. Experimental results demonstrate that the improved Faster RCNN object detection model achieves a 1.2% increase in confidence when trained with small training datasets. The accuracy of generated fault description texts reaches approximately 98% compared to standard texts. The model presented in this article addresses the challenge of diagnosing faults in industrial equipment, particularly in complex scenarios with limited data, such as substations. It enhances the target detection model to effectively extract visual features even when data is scarce. Additionally, it utilizes an MMKG to enable interpretable intelligent decision-making.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3316473</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data models ; Diagnostic systems ; Fault diagnosis ; Feature extraction ; graphical reasoning ; Industrial equipment ; Knowledge graphs ; Knowledge representation ; Mapping ; multimodal knowledge graph (MMKG) ; multitarget detection ; Object detection ; Object recognition ; Substations ; Target detection ; text generation ; Texts ; Transformers ; Visualization</subject><ispartof>IEEE sensors journal, 2023-11, Vol.23 (21), p.26269-26278</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-e482f56093e71d40f94a19f26a4701a83b6ec08ae44e866df199d51655e31ed63</citedby><cites>FETCH-LOGICAL-c294t-e482f56093e71d40f94a19f26a4701a83b6ec08ae44e866df199d51655e31ed63</cites><orcidid>0009-0009-6306-6465 ; 0000-0001-7236-3589 ; 0000-0002-3618-6068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10261436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10261436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Yuezhong</creatorcontrib><creatorcontrib>Liu, Fumin</creatorcontrib><creatorcontrib>Wan, Lanjun</creatorcontrib><creatorcontrib>Wang, Zhongmei</creatorcontrib><title>Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Industrial equipment failure diagnosis is a crucial issue that impacts the national industrial manufacturing level, economic cycle development, and sustainable technological advancement. A multimodal knowledge graph (MMKG)-based intelligent diagnostic model for industrial equipment fault is proposed to address the issues of insufficient and inadequate fault data samples encountered when using a single-mode model for fault diagnosis in existing industrial equipment. This model does not require extensive data learning for equipment fault diagnosis in complex industrial scenarios. The model utilizes an improved faster region with CNN (Faster RCNN) features the object detection module to extract visual information feature vectors of semiordered main and nonmain objects. These feature vectors are then mapped to entity, attribute, and relationship vectors in a knowledge graph using cosine similarity for feature correspondence mapping. The semantic matching inference is performed based on this mapping, resulting in a set of fault triplets. Finally, the bidirectional and autoregressive transformers (BARTs) text generation model processes this triplet set to generate fault diagnosis texts. Experimental results demonstrate that the improved Faster RCNN object detection model achieves a 1.2% increase in confidence when trained with small training datasets. The accuracy of generated fault description texts reaches approximately 98% compared to standard texts. The model presented in this article addresses the challenge of diagnosing faults in industrial equipment, particularly in complex scenarios with limited data, such as substations. It enhances the target detection model to effectively extract visual features even when data is scarce. Additionally, it utilizes an MMKG to enable interpretable intelligent decision-making.</description><subject>Data models</subject><subject>Diagnostic systems</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>graphical reasoning</subject><subject>Industrial equipment</subject><subject>Knowledge graphs</subject><subject>Knowledge representation</subject><subject>Mapping</subject><subject>multimodal knowledge graph (MMKG)</subject><subject>multitarget detection</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Substations</subject><subject>Target detection</subject><subject>text generation</subject><subject>Texts</subject><subject>Transformers</subject><subject>Visualization</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUx4MoOKcfQPAQ8NyZNGmaHHVuc7rpQQVvITavM6NratIifntbtoOn94f3-78HP4QuKZlQStTN4-vseZKSlE0Yo4Ln7AiNaJbJhOZcHg-ZkYSz_OMUncW4JYSqPMtHSC_rFqrKbaBu8dx0VYvvndnUPrauwGtvocKlD3hZ2y62wZkKz7471-wG_s5EsNjXeN333M7bfvtU-58K7AbwIpjm6xydlKaKcHGYY_Q-n71NH5LVy2I5vV0lRap4mwCXaZkJohjk1HJSKm6oKlNheE6okexTQEGkAc5BCmFLqpTNqMgyYBSsYGN0vb_bBP_dQWz11neh7l_qVEoulZSC9RTdU0XwMQYodRPczoRfTYkePOrBox486oPHvnO17zgA-MengnIm2B8Bam7d</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Wu, Yuezhong</creator><creator>Liu, Fumin</creator><creator>Wan, Lanjun</creator><creator>Wang, Zhongmei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-6306-6465</orcidid><orcidid>https://orcid.org/0000-0001-7236-3589</orcidid><orcidid>https://orcid.org/0000-0002-3618-6068</orcidid></search><sort><creationdate>20231101</creationdate><title>Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph</title><author>Wu, Yuezhong ; Liu, Fumin ; Wan, Lanjun ; Wang, Zhongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-e482f56093e71d40f94a19f26a4701a83b6ec08ae44e866df199d51655e31ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data models</topic><topic>Diagnostic systems</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>graphical reasoning</topic><topic>Industrial equipment</topic><topic>Knowledge graphs</topic><topic>Knowledge representation</topic><topic>Mapping</topic><topic>multimodal knowledge graph (MMKG)</topic><topic>multitarget detection</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Substations</topic><topic>Target detection</topic><topic>text generation</topic><topic>Texts</topic><topic>Transformers</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuezhong</creatorcontrib><creatorcontrib>Liu, Fumin</creatorcontrib><creatorcontrib>Wan, Lanjun</creatorcontrib><creatorcontrib>Wang, Zhongmei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Yuezhong</au><au>Liu, Fumin</au><au>Wan, Lanjun</au><au>Wang, Zhongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>23</volume><issue>21</issue><spage>26269</spage><epage>26278</epage><pages>26269-26278</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Industrial equipment failure diagnosis is a crucial issue that impacts the national industrial manufacturing level, economic cycle development, and sustainable technological advancement. A multimodal knowledge graph (MMKG)-based intelligent diagnostic model for industrial equipment fault is proposed to address the issues of insufficient and inadequate fault data samples encountered when using a single-mode model for fault diagnosis in existing industrial equipment. This model does not require extensive data learning for equipment fault diagnosis in complex industrial scenarios. The model utilizes an improved faster region with CNN (Faster RCNN) features the object detection module to extract visual information feature vectors of semiordered main and nonmain objects. These feature vectors are then mapped to entity, attribute, and relationship vectors in a knowledge graph using cosine similarity for feature correspondence mapping. The semantic matching inference is performed based on this mapping, resulting in a set of fault triplets. Finally, the bidirectional and autoregressive transformers (BARTs) text generation model processes this triplet set to generate fault diagnosis texts. Experimental results demonstrate that the improved Faster RCNN object detection model achieves a 1.2% increase in confidence when trained with small training datasets. The accuracy of generated fault description texts reaches approximately 98% compared to standard texts. The model presented in this article addresses the challenge of diagnosing faults in industrial equipment, particularly in complex scenarios with limited data, such as substations. It enhances the target detection model to effectively extract visual features even when data is scarce. Additionally, it utilizes an MMKG to enable interpretable intelligent decision-making.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3316473</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0009-6306-6465</orcidid><orcidid>https://orcid.org/0000-0001-7236-3589</orcidid><orcidid>https://orcid.org/0000-0002-3618-6068</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-11, Vol.23 (21), p.26269-26278
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10261436
source IEEE Electronic Library (IEL)
subjects Data models
Diagnostic systems
Fault diagnosis
Feature extraction
graphical reasoning
Industrial equipment
Knowledge graphs
Knowledge representation
Mapping
multimodal knowledge graph (MMKG)
multitarget detection
Object detection
Object recognition
Substations
Target detection
text generation
Texts
Transformers
Visualization
title Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Fault%20Diagnostic%20Model%20for%20Industrial%20Equipment%20Based%20on%20Multimodal%20Knowledge%20Graph&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wu,%20Yuezhong&rft.date=2023-11-01&rft.volume=23&rft.issue=21&rft.spage=26269&rft.epage=26278&rft.pages=26269-26278&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3316473&rft_dat=%3Cproquest_RIE%3E2884898863%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884898863&rft_id=info:pmid/&rft_ieee_id=10261436&rfr_iscdi=true