Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing
Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring ob...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-03, Vol.11 (5), p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Tang, Meiqin Xin, Yalin |
description | Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring object to the coordinator in real time through mobile edge computing server to realize data collection. A mathematical model of wireless sensor health monitoring network energy consumption optimization is established in this paper, which takes into account the constraints of the actual network system, such as computing task offloading, power, bit error rate and actual delay. To improve the performance of the method, ensure the complete decline of the function value and the convergence of the iteration matrix, an energy optimal resource allocation algorithm for health monitoring system based on improved quasi Newton method BFGS is proposed. It reduces the computational complexity during the iteration process, maintains superliner convergence, and has strong numerical stability in calculations. Simulation results show that the proposed resource allocation algorithm effectively reduces the time delay to process computing tasks and energy consumption of health monitoring sensor nodes, which enables the health monitoring system to process large-scale medical data and information more effectively and timely. |
doi_str_mv | 10.1109/JIOT.2023.3317830 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10258366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258366</ieee_id><sourcerecordid>2929257273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1b9b158036e589130d172e225ffd8319c935d8a2405e087592a56297722d5aed3</originalsourceid><addsrcrecordid>eNpNULFOwzAQjRBIVNAPQGKwxJxin2snHlEVaFFRhxYxRmlyKa4SO9jJUL4el3aobnj37t67k14UPTA6YYyq5_fFajMBCnzCOUtSTq-iEXBI4qmUcH3R30Zj7_eU0mATTMlRZLO61qVG05PMoNsdyMwaP7Rdr60hqwCt_i3-SW0d-dIOG_SerNH4wOdYNP03-bBG99ZpsyPrg--xJdqE4VY3SLJqh-Fo2w192N9HN3XReByf8S76fM02s3m8XL0tZi_LuISp7GO2VVsmUsolilQxTiuWAAKIuq5SzlSpuKjSAqZUIE0ToaAQElSSAFSiwIrfRU-nu52zPwP6Pt_bwZnwMgcVSiSQ8KBiJ1XprPcO67xzui3cIWc0P0abH6PNj9Hm52iD5_Hk0Yh4oQeRcin5HyXTdNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929257273</pqid></control><display><type>article</type><title>Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Meiqin ; Xin, Yalin</creator><creatorcontrib>Tang, Meiqin ; Xin, Yalin</creatorcontrib><description>Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring object to the coordinator in real time through mobile edge computing server to realize data collection. A mathematical model of wireless sensor health monitoring network energy consumption optimization is established in this paper, which takes into account the constraints of the actual network system, such as computing task offloading, power, bit error rate and actual delay. To improve the performance of the method, ensure the complete decline of the function value and the convergence of the iteration matrix, an energy optimal resource allocation algorithm for health monitoring system based on improved quasi Newton method BFGS is proposed. It reduces the computational complexity during the iteration process, maintains superliner convergence, and has strong numerical stability in calculations. Simulation results show that the proposed resource allocation algorithm effectively reduces the time delay to process computing tasks and energy consumption of health monitoring sensor nodes, which enables the health monitoring system to process large-scale medical data and information more effectively and timely.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3317830</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; BFGS(Broyden Fletcher Goldfarb Shanno) ; Biomedical engineering ; Bit error rate ; Computation offloading ; Convergence ; Data collection ; Edge computing ; Energy consumption ; Energy Consumption Optimization ; Iterative methods ; Mathematical analysis ; Mathematical Model ; Mobile computing ; Mobile Edge Computing ; Monitoring ; Monitoring systems ; Multi-access edge computing ; Numerical stability ; Optimization ; Quasi Newton methods ; Real time ; Remote monitoring ; Resource allocation ; Sensors ; Task analysis ; Time lag ; Wireless communication ; Wireless Sensor Health Monitoring System ; Wireless sensor networks</subject><ispartof>IEEE internet of things journal, 2024-03, Vol.11 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1b9b158036e589130d172e225ffd8319c935d8a2405e087592a56297722d5aed3</cites><orcidid>0000-0002-6881-5789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10258366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Meiqin</creatorcontrib><creatorcontrib>Xin, Yalin</creatorcontrib><title>Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring object to the coordinator in real time through mobile edge computing server to realize data collection. A mathematical model of wireless sensor health monitoring network energy consumption optimization is established in this paper, which takes into account the constraints of the actual network system, such as computing task offloading, power, bit error rate and actual delay. To improve the performance of the method, ensure the complete decline of the function value and the convergence of the iteration matrix, an energy optimal resource allocation algorithm for health monitoring system based on improved quasi Newton method BFGS is proposed. It reduces the computational complexity during the iteration process, maintains superliner convergence, and has strong numerical stability in calculations. Simulation results show that the proposed resource allocation algorithm effectively reduces the time delay to process computing tasks and energy consumption of health monitoring sensor nodes, which enables the health monitoring system to process large-scale medical data and information more effectively and timely.</description><subject>Algorithms</subject><subject>BFGS(Broyden Fletcher Goldfarb Shanno)</subject><subject>Biomedical engineering</subject><subject>Bit error rate</subject><subject>Computation offloading</subject><subject>Convergence</subject><subject>Data collection</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy Consumption Optimization</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical Model</subject><subject>Mobile computing</subject><subject>Mobile Edge Computing</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Multi-access edge computing</subject><subject>Numerical stability</subject><subject>Optimization</subject><subject>Quasi Newton methods</subject><subject>Real time</subject><subject>Remote monitoring</subject><subject>Resource allocation</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Time lag</subject><subject>Wireless communication</subject><subject>Wireless Sensor Health Monitoring System</subject><subject>Wireless sensor networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNULFOwzAQjRBIVNAPQGKwxJxin2snHlEVaFFRhxYxRmlyKa4SO9jJUL4el3aobnj37t67k14UPTA6YYyq5_fFajMBCnzCOUtSTq-iEXBI4qmUcH3R30Zj7_eU0mATTMlRZLO61qVG05PMoNsdyMwaP7Rdr60hqwCt_i3-SW0d-dIOG_SerNH4wOdYNP03-bBG99ZpsyPrg--xJdqE4VY3SLJqh-Fo2w192N9HN3XReByf8S76fM02s3m8XL0tZi_LuISp7GO2VVsmUsolilQxTiuWAAKIuq5SzlSpuKjSAqZUIE0ToaAQElSSAFSiwIrfRU-nu52zPwP6Pt_bwZnwMgcVSiSQ8KBiJ1XprPcO67xzui3cIWc0P0abH6PNj9Hm52iD5_Hk0Yh4oQeRcin5HyXTdNw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Tang, Meiqin</creator><creator>Xin, Yalin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6881-5789</orcidid></search><sort><creationdate>20240301</creationdate><title>Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing</title><author>Tang, Meiqin ; Xin, Yalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1b9b158036e589130d172e225ffd8319c935d8a2405e087592a56297722d5aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>BFGS(Broyden Fletcher Goldfarb Shanno)</topic><topic>Biomedical engineering</topic><topic>Bit error rate</topic><topic>Computation offloading</topic><topic>Convergence</topic><topic>Data collection</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy Consumption Optimization</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical Model</topic><topic>Mobile computing</topic><topic>Mobile Edge Computing</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Multi-access edge computing</topic><topic>Numerical stability</topic><topic>Optimization</topic><topic>Quasi Newton methods</topic><topic>Real time</topic><topic>Remote monitoring</topic><topic>Resource allocation</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Time lag</topic><topic>Wireless communication</topic><topic>Wireless Sensor Health Monitoring System</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Meiqin</creatorcontrib><creatorcontrib>Xin, Yalin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Meiqin</au><au>Xin, Yalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>11</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring object to the coordinator in real time through mobile edge computing server to realize data collection. A mathematical model of wireless sensor health monitoring network energy consumption optimization is established in this paper, which takes into account the constraints of the actual network system, such as computing task offloading, power, bit error rate and actual delay. To improve the performance of the method, ensure the complete decline of the function value and the convergence of the iteration matrix, an energy optimal resource allocation algorithm for health monitoring system based on improved quasi Newton method BFGS is proposed. It reduces the computational complexity during the iteration process, maintains superliner convergence, and has strong numerical stability in calculations. Simulation results show that the proposed resource allocation algorithm effectively reduces the time delay to process computing tasks and energy consumption of health monitoring sensor nodes, which enables the health monitoring system to process large-scale medical data and information more effectively and timely.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3317830</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6881-5789</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-03, Vol.11 (5), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10258366 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms BFGS(Broyden Fletcher Goldfarb Shanno) Biomedical engineering Bit error rate Computation offloading Convergence Data collection Edge computing Energy consumption Energy Consumption Optimization Iterative methods Mathematical analysis Mathematical Model Mobile computing Mobile Edge Computing Monitoring Monitoring systems Multi-access edge computing Numerical stability Optimization Quasi Newton methods Real time Remote monitoring Resource allocation Sensors Task analysis Time lag Wireless communication Wireless Sensor Health Monitoring System Wireless sensor networks |
title | Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Energy%20Consumption%20Optimization%20for%20Wireless%20Sensor%20Health%20Monitoring%20System%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Tang,%20Meiqin&rft.date=2024-03-01&rft.volume=11&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3317830&rft_dat=%3Cproquest_RIE%3E2929257273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929257273&rft_id=info:pmid/&rft_ieee_id=10258366&rfr_iscdi=true |