Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing

Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-03, Vol.11 (5), p.1-1
Hauptverfasser: Tang, Meiqin, Xin, Yalin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 5
container_start_page 1
container_title IEEE internet of things journal
container_volume 11
creator Tang, Meiqin
Xin, Yalin
description Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring object to the coordinator in real time through mobile edge computing server to realize data collection. A mathematical model of wireless sensor health monitoring network energy consumption optimization is established in this paper, which takes into account the constraints of the actual network system, such as computing task offloading, power, bit error rate and actual delay. To improve the performance of the method, ensure the complete decline of the function value and the convergence of the iteration matrix, an energy optimal resource allocation algorithm for health monitoring system based on improved quasi Newton method BFGS is proposed. It reduces the computational complexity during the iteration process, maintains superliner convergence, and has strong numerical stability in calculations. Simulation results show that the proposed resource allocation algorithm effectively reduces the time delay to process computing tasks and energy consumption of health monitoring sensor nodes, which enables the health monitoring system to process large-scale medical data and information more effectively and timely.
doi_str_mv 10.1109/JIOT.2023.3317830
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10258366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258366</ieee_id><sourcerecordid>2929257273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1b9b158036e589130d172e225ffd8319c935d8a2405e087592a56297722d5aed3</originalsourceid><addsrcrecordid>eNpNULFOwzAQjRBIVNAPQGKwxJxin2snHlEVaFFRhxYxRmlyKa4SO9jJUL4el3aobnj37t67k14UPTA6YYyq5_fFajMBCnzCOUtSTq-iEXBI4qmUcH3R30Zj7_eU0mATTMlRZLO61qVG05PMoNsdyMwaP7Rdr60hqwCt_i3-SW0d-dIOG_SerNH4wOdYNP03-bBG99ZpsyPrg--xJdqE4VY3SLJqh-Fo2w192N9HN3XReByf8S76fM02s3m8XL0tZi_LuISp7GO2VVsmUsolilQxTiuWAAKIuq5SzlSpuKjSAqZUIE0ToaAQElSSAFSiwIrfRU-nu52zPwP6Pt_bwZnwMgcVSiSQ8KBiJ1XprPcO67xzui3cIWc0P0abH6PNj9Hm52iD5_Hk0Yh4oQeRcin5HyXTdNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929257273</pqid></control><display><type>article</type><title>Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Meiqin ; Xin, Yalin</creator><creatorcontrib>Tang, Meiqin ; Xin, Yalin</creatorcontrib><description>Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring object to the coordinator in real time through mobile edge computing server to realize data collection. A mathematical model of wireless sensor health monitoring network energy consumption optimization is established in this paper, which takes into account the constraints of the actual network system, such as computing task offloading, power, bit error rate and actual delay. To improve the performance of the method, ensure the complete decline of the function value and the convergence of the iteration matrix, an energy optimal resource allocation algorithm for health monitoring system based on improved quasi Newton method BFGS is proposed. It reduces the computational complexity during the iteration process, maintains superliner convergence, and has strong numerical stability in calculations. Simulation results show that the proposed resource allocation algorithm effectively reduces the time delay to process computing tasks and energy consumption of health monitoring sensor nodes, which enables the health monitoring system to process large-scale medical data and information more effectively and timely.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3317830</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; BFGS(Broyden Fletcher Goldfarb Shanno) ; Biomedical engineering ; Bit error rate ; Computation offloading ; Convergence ; Data collection ; Edge computing ; Energy consumption ; Energy Consumption Optimization ; Iterative methods ; Mathematical analysis ; Mathematical Model ; Mobile computing ; Mobile Edge Computing ; Monitoring ; Monitoring systems ; Multi-access edge computing ; Numerical stability ; Optimization ; Quasi Newton methods ; Real time ; Remote monitoring ; Resource allocation ; Sensors ; Task analysis ; Time lag ; Wireless communication ; Wireless Sensor Health Monitoring System ; Wireless sensor networks</subject><ispartof>IEEE internet of things journal, 2024-03, Vol.11 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1b9b158036e589130d172e225ffd8319c935d8a2405e087592a56297722d5aed3</cites><orcidid>0000-0002-6881-5789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10258366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Meiqin</creatorcontrib><creatorcontrib>Xin, Yalin</creatorcontrib><title>Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring object to the coordinator in real time through mobile edge computing server to realize data collection. A mathematical model of wireless sensor health monitoring network energy consumption optimization is established in this paper, which takes into account the constraints of the actual network system, such as computing task offloading, power, bit error rate and actual delay. To improve the performance of the method, ensure the complete decline of the function value and the convergence of the iteration matrix, an energy optimal resource allocation algorithm for health monitoring system based on improved quasi Newton method BFGS is proposed. It reduces the computational complexity during the iteration process, maintains superliner convergence, and has strong numerical stability in calculations. Simulation results show that the proposed resource allocation algorithm effectively reduces the time delay to process computing tasks and energy consumption of health monitoring sensor nodes, which enables the health monitoring system to process large-scale medical data and information more effectively and timely.</description><subject>Algorithms</subject><subject>BFGS(Broyden Fletcher Goldfarb Shanno)</subject><subject>Biomedical engineering</subject><subject>Bit error rate</subject><subject>Computation offloading</subject><subject>Convergence</subject><subject>Data collection</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy Consumption Optimization</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical Model</subject><subject>Mobile computing</subject><subject>Mobile Edge Computing</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Multi-access edge computing</subject><subject>Numerical stability</subject><subject>Optimization</subject><subject>Quasi Newton methods</subject><subject>Real time</subject><subject>Remote monitoring</subject><subject>Resource allocation</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Time lag</subject><subject>Wireless communication</subject><subject>Wireless Sensor Health Monitoring System</subject><subject>Wireless sensor networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNULFOwzAQjRBIVNAPQGKwxJxin2snHlEVaFFRhxYxRmlyKa4SO9jJUL4el3aobnj37t67k14UPTA6YYyq5_fFajMBCnzCOUtSTq-iEXBI4qmUcH3R30Zj7_eU0mATTMlRZLO61qVG05PMoNsdyMwaP7Rdr60hqwCt_i3-SW0d-dIOG_SerNH4wOdYNP03-bBG99ZpsyPrg--xJdqE4VY3SLJqh-Fo2w192N9HN3XReByf8S76fM02s3m8XL0tZi_LuISp7GO2VVsmUsolilQxTiuWAAKIuq5SzlSpuKjSAqZUIE0ToaAQElSSAFSiwIrfRU-nu52zPwP6Pt_bwZnwMgcVSiSQ8KBiJ1XprPcO67xzui3cIWc0P0abH6PNj9Hm52iD5_Hk0Yh4oQeRcin5HyXTdNw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Tang, Meiqin</creator><creator>Xin, Yalin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6881-5789</orcidid></search><sort><creationdate>20240301</creationdate><title>Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing</title><author>Tang, Meiqin ; Xin, Yalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1b9b158036e589130d172e225ffd8319c935d8a2405e087592a56297722d5aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>BFGS(Broyden Fletcher Goldfarb Shanno)</topic><topic>Biomedical engineering</topic><topic>Bit error rate</topic><topic>Computation offloading</topic><topic>Convergence</topic><topic>Data collection</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy Consumption Optimization</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical Model</topic><topic>Mobile computing</topic><topic>Mobile Edge Computing</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Multi-access edge computing</topic><topic>Numerical stability</topic><topic>Optimization</topic><topic>Quasi Newton methods</topic><topic>Real time</topic><topic>Remote monitoring</topic><topic>Resource allocation</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Time lag</topic><topic>Wireless communication</topic><topic>Wireless Sensor Health Monitoring System</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Meiqin</creatorcontrib><creatorcontrib>Xin, Yalin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Meiqin</au><au>Xin, Yalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>11</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Wireless sensor health monitoring system integrates biomedical engineering technology and wireless sensor network, which can monitor human physiological information in real time. The monitoring system takes the network technology as the platform, and sends the status information of the monitoring object to the coordinator in real time through mobile edge computing server to realize data collection. A mathematical model of wireless sensor health monitoring network energy consumption optimization is established in this paper, which takes into account the constraints of the actual network system, such as computing task offloading, power, bit error rate and actual delay. To improve the performance of the method, ensure the complete decline of the function value and the convergence of the iteration matrix, an energy optimal resource allocation algorithm for health monitoring system based on improved quasi Newton method BFGS is proposed. It reduces the computational complexity during the iteration process, maintains superliner convergence, and has strong numerical stability in calculations. Simulation results show that the proposed resource allocation algorithm effectively reduces the time delay to process computing tasks and energy consumption of health monitoring sensor nodes, which enables the health monitoring system to process large-scale medical data and information more effectively and timely.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3317830</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6881-5789</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-03, Vol.11 (5), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10258366
source IEEE Electronic Library (IEL)
subjects Algorithms
BFGS(Broyden Fletcher Goldfarb Shanno)
Biomedical engineering
Bit error rate
Computation offloading
Convergence
Data collection
Edge computing
Energy consumption
Energy Consumption Optimization
Iterative methods
Mathematical analysis
Mathematical Model
Mobile computing
Mobile Edge Computing
Monitoring
Monitoring systems
Multi-access edge computing
Numerical stability
Optimization
Quasi Newton methods
Real time
Remote monitoring
Resource allocation
Sensors
Task analysis
Time lag
Wireless communication
Wireless Sensor Health Monitoring System
Wireless sensor networks
title Efficient Energy Consumption Optimization for Wireless Sensor Health Monitoring System in Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Energy%20Consumption%20Optimization%20for%20Wireless%20Sensor%20Health%20Monitoring%20System%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Tang,%20Meiqin&rft.date=2024-03-01&rft.volume=11&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3317830&rft_dat=%3Cproquest_RIE%3E2929257273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929257273&rft_id=info:pmid/&rft_ieee_id=10258366&rfr_iscdi=true