Graph Convolutional Neural Networks With Diverse Negative Samples via Decomposed Determinant Point Processes

Graph convolutional neural networks (GCNs) have achieved great success in graph representation learning by extracting high-level features from nodes and their topology. Since GCNs generally follow a message-passing mechanism, each node aggregates information from its first-order neighbor to update i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-12, Vol.35 (12), p.18160-18171
Hauptverfasser: Duan, Wei, Xuan, Junyu, Qiao, Maoying, Lu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!