Graph Convolutional Neural Networks With Diverse Negative Samples via Decomposed Determinant Point Processes
Graph convolutional neural networks (GCNs) have achieved great success in graph representation learning by extracting high-level features from nodes and their topology. Since GCNs generally follow a message-passing mechanism, each node aggregates information from its first-order neighbor to update i...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-12, Vol.35 (12), p.18160-18171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!