Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure
Accurately predicting drug-target binding affinity plays a vital role in accelerating drug discovery. Many computational approaches have been proposed due to costly and time-consuming of wet laboratory experiments. In the input representation, most methods only focus on the target sequence propertie...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2023-12, Vol.27 (12), p.6112-6120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6120 |
---|---|
container_issue | 12 |
container_start_page | 6112 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 27 |
creator | Wang, Kaili Li, Min |
description | Accurately predicting drug-target binding affinity plays a vital role in accelerating drug discovery. Many computational approaches have been proposed due to costly and time-consuming of wet laboratory experiments. In the input representation, most methods only focus on the target sequence properties or target structure properties while ignore the overall contribution. Therefore, we develop a novel fusion protocol based on multiscale convolutional neural networks and graph neural networks, named CGraphDTA, to predict drug-target binding affinity using target sequence and structure. Unlike existing methods, CGraphDTA is the first model constructed with target sequence and structure as input. Concretely, the multiscale convolutional neural networks are utilized to extract target and drug presentation from sequence, graph neural networks are employed to extract graph presentation from target and drug molecular structure. We compare CGraphDTA with the state-of-the-art methods, the results show that our model outperforms the current methods on the test sets. Furthermore, we conduct ablation studies, biological interpretation examination and drug selectivity evaluation, all results suggest that CGraphDTA is a useful tool to predict drug-target binding affinity and accelerate drug discovery. |
doi_str_mv | 10.1109/JBHI.2023.3315073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10250911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10250911</ieee_id><sourcerecordid>2898764436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-3fdba6585c4c009a55aa9bd9eac4e0567fa0962f651cee9c10e7e4a859fcd3b13</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoKrUfQBBZ8OJla7L5s5tja61VCh6q5yXNTmpKm63J7sGTX91sW0XMZTLzfvMYeAhdEjwgBMu759H0aZDhjA4oJRzn9AidZ0QUaZbh4vjnTyQ7Q_0QVji-Io6kOEVnNM8xJYKfo69JG2zt0pEKUCVjgG0yA-Wddctk6PW7bUA3rYfE1D7KXddJY98u01fll9AkI-uqHW6Mdbb5TN5C1x5U5aodnczhowWnYTeZN77d-V6gE6PWAfqH2kNvk4fX-2k6e3l8uh_OUk05blJqqoUSvOCaaYyl4lwpuagkKM0Ac5EbhaXIjOBEA0hNMOTAVMGl0RVdENpDt3vfra_jHaEpNzZoWK-Vg7oNZVYIVkjJKIvozT90VbfexesiJYtcMEZFpMie0r4OwYMpt95ulP8sCS67gMouoLILqDwEFHeuD87tYgPV78ZPHBG42gMWAP4YZhxLQug3C56U7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898764436</pqid></control><display><type>article</type><title>Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Kaili ; Li, Min</creator><creatorcontrib>Wang, Kaili ; Li, Min</creatorcontrib><description>Accurately predicting drug-target binding affinity plays a vital role in accelerating drug discovery. Many computational approaches have been proposed due to costly and time-consuming of wet laboratory experiments. In the input representation, most methods only focus on the target sequence properties or target structure properties while ignore the overall contribution. Therefore, we develop a novel fusion protocol based on multiscale convolutional neural networks and graph neural networks, named CGraphDTA, to predict drug-target binding affinity using target sequence and structure. Unlike existing methods, CGraphDTA is the first model constructed with target sequence and structure as input. Concretely, the multiscale convolutional neural networks are utilized to extract target and drug presentation from sequence, graph neural networks are employed to extract graph presentation from target and drug molecular structure. We compare CGraphDTA with the state-of-the-art methods, the results show that our model outperforms the current methods on the test sets. Furthermore, we conduct ablation studies, biological interpretation examination and drug selectivity evaluation, all results suggest that CGraphDTA is a useful tool to predict drug-target binding affinity and accelerate drug discovery.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3315073</identifier><identifier>PMID: 37703165</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Ablation ; Affinity ; Artificial neural networks ; Binding ; Convolutional neural networks ; Deep Learning ; Drug Discovery ; Drug-target binding affinity ; Drugs ; Feature extraction ; Graph neural networks ; Hidden Markov models ; Humans ; Molecular structure ; multiscale convolutional neural networks ; Neural networks ; Neural Networks, Computer ; Protein engineering ; Proteins ; Target detection ; target sequence ; target structure</subject><ispartof>IEEE journal of biomedical and health informatics, 2023-12, Vol.27 (12), p.6112-6120</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-3fdba6585c4c009a55aa9bd9eac4e0567fa0962f651cee9c10e7e4a859fcd3b13</citedby><cites>FETCH-LOGICAL-c350t-3fdba6585c4c009a55aa9bd9eac4e0567fa0962f651cee9c10e7e4a859fcd3b13</cites><orcidid>0000-0002-0188-1394 ; 0009-0004-1664-5943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10250911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10250911$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37703165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kaili</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><title>Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Accurately predicting drug-target binding affinity plays a vital role in accelerating drug discovery. Many computational approaches have been proposed due to costly and time-consuming of wet laboratory experiments. In the input representation, most methods only focus on the target sequence properties or target structure properties while ignore the overall contribution. Therefore, we develop a novel fusion protocol based on multiscale convolutional neural networks and graph neural networks, named CGraphDTA, to predict drug-target binding affinity using target sequence and structure. Unlike existing methods, CGraphDTA is the first model constructed with target sequence and structure as input. Concretely, the multiscale convolutional neural networks are utilized to extract target and drug presentation from sequence, graph neural networks are employed to extract graph presentation from target and drug molecular structure. We compare CGraphDTA with the state-of-the-art methods, the results show that our model outperforms the current methods on the test sets. Furthermore, we conduct ablation studies, biological interpretation examination and drug selectivity evaluation, all results suggest that CGraphDTA is a useful tool to predict drug-target binding affinity and accelerate drug discovery.</description><subject>Ablation</subject><subject>Affinity</subject><subject>Artificial neural networks</subject><subject>Binding</subject><subject>Convolutional neural networks</subject><subject>Deep Learning</subject><subject>Drug Discovery</subject><subject>Drug-target binding affinity</subject><subject>Drugs</subject><subject>Feature extraction</subject><subject>Graph neural networks</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Molecular structure</subject><subject>multiscale convolutional neural networks</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Protein engineering</subject><subject>Proteins</subject><subject>Target detection</subject><subject>target sequence</subject><subject>target structure</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9LAzEQxYMoKrUfQBBZ8OJla7L5s5tja61VCh6q5yXNTmpKm63J7sGTX91sW0XMZTLzfvMYeAhdEjwgBMu759H0aZDhjA4oJRzn9AidZ0QUaZbh4vjnTyQ7Q_0QVji-Io6kOEVnNM8xJYKfo69JG2zt0pEKUCVjgG0yA-Wddctk6PW7bUA3rYfE1D7KXddJY98u01fll9AkI-uqHW6Mdbb5TN5C1x5U5aodnczhowWnYTeZN77d-V6gE6PWAfqH2kNvk4fX-2k6e3l8uh_OUk05blJqqoUSvOCaaYyl4lwpuagkKM0Ac5EbhaXIjOBEA0hNMOTAVMGl0RVdENpDt3vfra_jHaEpNzZoWK-Vg7oNZVYIVkjJKIvozT90VbfexesiJYtcMEZFpMie0r4OwYMpt95ulP8sCS67gMouoLILqDwEFHeuD87tYgPV78ZPHBG42gMWAP4YZhxLQug3C56U7g</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Kaili</creator><creator>Li, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0188-1394</orcidid><orcidid>https://orcid.org/0009-0004-1664-5943</orcidid></search><sort><creationdate>20231201</creationdate><title>Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure</title><author>Wang, Kaili ; Li, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-3fdba6585c4c009a55aa9bd9eac4e0567fa0962f651cee9c10e7e4a859fcd3b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Affinity</topic><topic>Artificial neural networks</topic><topic>Binding</topic><topic>Convolutional neural networks</topic><topic>Deep Learning</topic><topic>Drug Discovery</topic><topic>Drug-target binding affinity</topic><topic>Drugs</topic><topic>Feature extraction</topic><topic>Graph neural networks</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Molecular structure</topic><topic>multiscale convolutional neural networks</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Protein engineering</topic><topic>Proteins</topic><topic>Target detection</topic><topic>target sequence</topic><topic>target structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaili</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Kaili</au><au>Li, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>12</issue><spage>6112</spage><epage>6120</epage><pages>6112-6120</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Accurately predicting drug-target binding affinity plays a vital role in accelerating drug discovery. Many computational approaches have been proposed due to costly and time-consuming of wet laboratory experiments. In the input representation, most methods only focus on the target sequence properties or target structure properties while ignore the overall contribution. Therefore, we develop a novel fusion protocol based on multiscale convolutional neural networks and graph neural networks, named CGraphDTA, to predict drug-target binding affinity using target sequence and structure. Unlike existing methods, CGraphDTA is the first model constructed with target sequence and structure as input. Concretely, the multiscale convolutional neural networks are utilized to extract target and drug presentation from sequence, graph neural networks are employed to extract graph presentation from target and drug molecular structure. We compare CGraphDTA with the state-of-the-art methods, the results show that our model outperforms the current methods on the test sets. Furthermore, we conduct ablation studies, biological interpretation examination and drug selectivity evaluation, all results suggest that CGraphDTA is a useful tool to predict drug-target binding affinity and accelerate drug discovery.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37703165</pmid><doi>10.1109/JBHI.2023.3315073</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0188-1394</orcidid><orcidid>https://orcid.org/0009-0004-1664-5943</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2023-12, Vol.27 (12), p.6112-6120 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_10250911 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation Affinity Artificial neural networks Binding Convolutional neural networks Deep Learning Drug Discovery Drug-target binding affinity Drugs Feature extraction Graph neural networks Hidden Markov models Humans Molecular structure multiscale convolutional neural networks Neural networks Neural Networks, Computer Protein engineering Proteins Target detection target sequence target structure |
title | Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion-Based%20Deep%20Learning%20Architecture%20for%20Detecting%20Drug-Target%20Binding%20Affinity%20Using%20Target%20and%20Drug%20Sequence%20and%20Structure&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Wang,%20Kaili&rft.date=2023-12-01&rft.volume=27&rft.issue=12&rft.spage=6112&rft.epage=6120&rft.pages=6112-6120&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3315073&rft_dat=%3Cproquest_RIE%3E2898764436%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898764436&rft_id=info:pmid/37703165&rft_ieee_id=10250911&rfr_iscdi=true |