Pattern recognition in hydraulic backlash using neural network

An approach for estimating and classifying backlash clearance fault condition in hydraulic actuators is presented. Three networks (ADALINE network, a nonlinear neuron network, and multilayer perceptron network) are trained and applied to an experimental hydraulic system to identify the gap between a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Borras P, C., Stalford, H.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405 vol.1
container_issue
container_start_page 400
container_title
container_volume 1
creator Borras P, C.
Stalford, H.L.
description An approach for estimating and classifying backlash clearance fault condition in hydraulic actuators is presented. Three networks (ADALINE network, a nonlinear neuron network, and multilayer perceptron network) are trained and applied to an experimental hydraulic system to identify the gap between an actuator pin and a load mass. The networks are trained on five clearance gaps of widths 1, 7, 12, 25, and 40 thousandths of an inch. They are tested on three clearance gaps of widths 10, 20, and 35 thousandths of an inch. The multilayer perceptron network performed very well in all testing. The other two networks did not perform well, except for small gaps.
doi_str_mv 10.1109/ACC.2002.1024838
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1024838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1024838</ieee_id><sourcerecordid>15715618</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-74bd4a1554395029cd2dbeef85d5ba7b00027061205b521879c16c32a52b46473</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMPsK3uBTezcTn13ryzEcpQH1DQha5Lkknb2DEtyRTpv7cwgqtvcT4OnEPILcIUEczDrGmmFIBOESjXTJ-REWVK10JLPCdjUBqYokbDBRmB4qxGieaKjEv5AkBjJIzI47vt-5BTlYPfrVPs4y5VMVWbY5vtoYu-ctZvO1s21aHEtK5SOGTbndD_7PL2mlyubFfCzR8n5PNp_tG81Iu359dmtqgjBdbXiruWWxSCMyOAGt_S1oWw0qIVzioHpxUKJFIQTlDUyniUnlErqOOSKzYh90Pv3hZvu1W2ycey3Of4bfNxiUKhkKhP3t3gxRDCfzz8w34B46lV1A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pattern recognition in hydraulic backlash using neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Borras P, C. ; Stalford, H.L.</creator><creatorcontrib>Borras P, C. ; Stalford, H.L.</creatorcontrib><description>An approach for estimating and classifying backlash clearance fault condition in hydraulic actuators is presented. Three networks (ADALINE network, a nonlinear neuron network, and multilayer perceptron network) are trained and applied to an experimental hydraulic system to identify the gap between an actuator pin and a load mass. The networks are trained on five clearance gaps of widths 1, 7, 12, 25, and 40 thousandths of an inch. They are tested on three clearance gaps of widths 10, 20, and 35 thousandths of an inch. The multilayer perceptron network performed very well in all testing. The other two networks did not perform well, except for small gaps.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 0780372980</identifier><identifier>ISBN: 9780780372986</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.1109/ACC.2002.1024838</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Hydraulic actuators ; Hydraulic systems ; Intelligent networks ; Least squares approximation ; Multilayer perceptrons ; Neural networks ; Neurons ; Pattern recognition ; Testing ; Vectors</subject><ispartof>Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), 2002, Vol.1, p.400-405 vol.1</ispartof><rights>2004 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1024838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1024838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15715618$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borras P, C.</creatorcontrib><creatorcontrib>Stalford, H.L.</creatorcontrib><title>Pattern recognition in hydraulic backlash using neural network</title><title>Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301)</title><addtitle>ACC</addtitle><description>An approach for estimating and classifying backlash clearance fault condition in hydraulic actuators is presented. Three networks (ADALINE network, a nonlinear neuron network, and multilayer perceptron network) are trained and applied to an experimental hydraulic system to identify the gap between an actuator pin and a load mass. The networks are trained on five clearance gaps of widths 1, 7, 12, 25, and 40 thousandths of an inch. They are tested on three clearance gaps of widths 10, 20, and 35 thousandths of an inch. The multilayer perceptron network performed very well in all testing. The other two networks did not perform well, except for small gaps.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Hydraulic actuators</subject><subject>Hydraulic systems</subject><subject>Intelligent networks</subject><subject>Least squares approximation</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Testing</subject><subject>Vectors</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>0780372980</isbn><isbn>9780780372986</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLAzEUhYMPsK3uBTezcTn13ryzEcpQH1DQha5Lkknb2DEtyRTpv7cwgqtvcT4OnEPILcIUEczDrGmmFIBOESjXTJ-REWVK10JLPCdjUBqYokbDBRmB4qxGieaKjEv5AkBjJIzI47vt-5BTlYPfrVPs4y5VMVWbY5vtoYu-ctZvO1s21aHEtK5SOGTbndD_7PL2mlyubFfCzR8n5PNp_tG81Iu359dmtqgjBdbXiruWWxSCMyOAGt_S1oWw0qIVzioHpxUKJFIQTlDUyniUnlErqOOSKzYh90Pv3hZvu1W2ycey3Of4bfNxiUKhkKhP3t3gxRDCfzz8w34B46lV1A</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Borras P, C.</creator><creator>Stalford, H.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Pattern recognition in hydraulic backlash using neural network</title><author>Borras P, C. ; Stalford, H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-74bd4a1554395029cd2dbeef85d5ba7b00027061205b521879c16c32a52b46473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Hydraulic actuators</topic><topic>Hydraulic systems</topic><topic>Intelligent networks</topic><topic>Least squares approximation</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Testing</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Borras P, C.</creatorcontrib><creatorcontrib>Stalford, H.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borras P, C.</au><au>Stalford, H.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pattern recognition in hydraulic backlash using neural network</atitle><btitle>Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301)</btitle><stitle>ACC</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>400</spage><epage>405 vol.1</epage><pages>400-405 vol.1</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>0780372980</isbn><isbn>9780780372986</isbn><abstract>An approach for estimating and classifying backlash clearance fault condition in hydraulic actuators is presented. Three networks (ADALINE network, a nonlinear neuron network, and multilayer perceptron network) are trained and applied to an experimental hydraulic system to identify the gap between an actuator pin and a load mass. The networks are trained on five clearance gaps of widths 1, 7, 12, 25, and 40 thousandths of an inch. They are tested on three clearance gaps of widths 10, 20, and 35 thousandths of an inch. The multilayer perceptron network performed very well in all testing. The other two networks did not perform well, except for small gaps.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ACC.2002.1024838</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), 2002, Vol.1, p.400-405 vol.1
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_1024838
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Hydraulic actuators
Hydraulic systems
Intelligent networks
Least squares approximation
Multilayer perceptrons
Neural networks
Neurons
Pattern recognition
Testing
Vectors
title Pattern recognition in hydraulic backlash using neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pattern%20recognition%20in%20hydraulic%20backlash%20using%20neural%20network&rft.btitle=Proceedings%20of%20the%202002%20American%20Control%20Conference%20(IEEE%20Cat.%20No.CH37301)&rft.au=Borras%20P,%20C.&rft.date=2002&rft.volume=1&rft.spage=400&rft.epage=405%20vol.1&rft.pages=400-405%20vol.1&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=0780372980&rft.isbn_list=9780780372986&rft_id=info:doi/10.1109/ACC.2002.1024838&rft_dat=%3Cpascalfrancis_6IE%3E15715618%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1024838&rfr_iscdi=true