Modeling Plasmonic Antennas for the Millimeterwave & THz Range
Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2023-09, Vol.29 (5: Terahertz Photonics), p.1-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 5: Terahertz Photonics |
container_start_page | 1 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 29 |
creator | Ibili, Hande Blatter, Tobias Baumann, Michael Kulmer, Laurenz Vukovic, Boris Smajic, Jasmin Leuthold, Juerg |
description | Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve the overall understanding of the experimentally found powerful antenna field enhancement (between the impinging field at the antenna and the field within the modulator). This enhancement has already been shown to be as high as 90'000 and allows to efficiently evaluate relevant figures of merit for antenna design and optimization. The effects of antenna design parameters are presented and discussed in detail. The accuracy of the suggested models is verified by rigorous numerical computation through field simulations. As a result, we propose optimized antenna structures and their parameters, and demonstrate their field enhancement capabilities. |
doi_str_mv | 10.1109/JSTQE.2023.3314696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10247555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247555</ieee_id><sourcerecordid>2873590870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-2eda49198faac96fff6c75cc6551da21d4f2297347e7fb71d0700a332e22d2cc3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKt_QFwEBHdTb16TmY1QSrVKi68K7kLM3NQp05maTBX99ba2C1fnLs53D3yEnDLoMQb55d3z9HHY48BFTwgm0zzdIx2mVJZIJfn--gatE57C6yE5inEOAJnMoEOuJk2BVVnP6ENl46KpS0f7dYt1bSP1TaDtO9JJWVXlAlsMX_YT6QWdjn7ok61neEwOvK0inuyyS16uh9PBKBnf39wO-uPECQltwrGwMmd55q11eeq9T51WzqVKscJyVkjPea6F1Kj9m2YFaAArBEfOC-6c6JLz7d9laD5WGFszb1ahXk8anmmhcsg0rFt823KhiTGgN8tQLmz4NgzMxpP582Q2nszO0xo620IlIv4DuNRKKfELj-ljXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873590870</pqid></control><display><type>article</type><title>Modeling Plasmonic Antennas for the Millimeterwave & THz Range</title><source>IEEE Electronic Library (IEL)</source><creator>Ibili, Hande ; Blatter, Tobias ; Baumann, Michael ; Kulmer, Laurenz ; Vukovic, Boris ; Smajic, Jasmin ; Leuthold, Juerg</creator><creatorcontrib>Ibili, Hande ; Blatter, Tobias ; Baumann, Michael ; Kulmer, Laurenz ; Vukovic, Boris ; Smajic, Jasmin ; Leuthold, Juerg</creatorcontrib><description>Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve the overall understanding of the experimentally found powerful antenna field enhancement (between the impinging field at the antenna and the field within the modulator). This enhancement has already been shown to be as high as 90'000 and allows to efficiently evaluate relevant figures of merit for antenna design and optimization. The effects of antenna design parameters are presented and discussed in detail. The accuracy of the suggested models is verified by rigorous numerical computation through field simulations. As a result, we propose optimized antenna structures and their parameters, and demonstrate their field enhancement capabilities.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2023.3314696</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>and wireless communications ; Antenna design ; Antenna radiation patterns ; Antennas ; Circuit design ; Design optimization ; Design parameters ; Dipole antennas ; Electro-optic devices ; equivalent circuit model ; Equivalent circuits ; field simulations ; Figure of merit ; Integrated circuit modeling ; Mathematical models ; Modulation ; Numerical analysis ; Optical modulation ; Plasmonics ; Plasmons ; Terahertz frequencies ; THz antennas ; THz frequency</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2023-09, Vol.29 (5: Terahertz Photonics), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-2eda49198faac96fff6c75cc6551da21d4f2297347e7fb71d0700a332e22d2cc3</citedby><cites>FETCH-LOGICAL-c340t-2eda49198faac96fff6c75cc6551da21d4f2297347e7fb71d0700a332e22d2cc3</cites><orcidid>0000-0002-2211-5955 ; 0000-0002-3365-7450 ; 0000-0003-0111-8169 ; 0000-0001-7692-5913 ; 0000-0001-9414-6497 ; 0000-0001-8774-0789 ; 0000-0002-1209-7570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10247555$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Ibili, Hande</creatorcontrib><creatorcontrib>Blatter, Tobias</creatorcontrib><creatorcontrib>Baumann, Michael</creatorcontrib><creatorcontrib>Kulmer, Laurenz</creatorcontrib><creatorcontrib>Vukovic, Boris</creatorcontrib><creatorcontrib>Smajic, Jasmin</creatorcontrib><creatorcontrib>Leuthold, Juerg</creatorcontrib><title>Modeling Plasmonic Antennas for the Millimeterwave & THz Range</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve the overall understanding of the experimentally found powerful antenna field enhancement (between the impinging field at the antenna and the field within the modulator). This enhancement has already been shown to be as high as 90'000 and allows to efficiently evaluate relevant figures of merit for antenna design and optimization. The effects of antenna design parameters are presented and discussed in detail. The accuracy of the suggested models is verified by rigorous numerical computation through field simulations. As a result, we propose optimized antenna structures and their parameters, and demonstrate their field enhancement capabilities.</description><subject>and wireless communications</subject><subject>Antenna design</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Circuit design</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Dipole antennas</subject><subject>Electro-optic devices</subject><subject>equivalent circuit model</subject><subject>Equivalent circuits</subject><subject>field simulations</subject><subject>Figure of merit</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Numerical analysis</subject><subject>Optical modulation</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Terahertz frequencies</subject><subject>THz antennas</subject><subject>THz frequency</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKt_QFwEBHdTb16TmY1QSrVKi68K7kLM3NQp05maTBX99ba2C1fnLs53D3yEnDLoMQb55d3z9HHY48BFTwgm0zzdIx2mVJZIJfn--gatE57C6yE5inEOAJnMoEOuJk2BVVnP6ENl46KpS0f7dYt1bSP1TaDtO9JJWVXlAlsMX_YT6QWdjn7ok61neEwOvK0inuyyS16uh9PBKBnf39wO-uPECQltwrGwMmd55q11eeq9T51WzqVKscJyVkjPea6F1Kj9m2YFaAArBEfOC-6c6JLz7d9laD5WGFszb1ahXk8anmmhcsg0rFt823KhiTGgN8tQLmz4NgzMxpP582Q2nszO0xo620IlIv4DuNRKKfELj-ljXw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Ibili, Hande</creator><creator>Blatter, Tobias</creator><creator>Baumann, Michael</creator><creator>Kulmer, Laurenz</creator><creator>Vukovic, Boris</creator><creator>Smajic, Jasmin</creator><creator>Leuthold, Juerg</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2211-5955</orcidid><orcidid>https://orcid.org/0000-0002-3365-7450</orcidid><orcidid>https://orcid.org/0000-0003-0111-8169</orcidid><orcidid>https://orcid.org/0000-0001-7692-5913</orcidid><orcidid>https://orcid.org/0000-0001-9414-6497</orcidid><orcidid>https://orcid.org/0000-0001-8774-0789</orcidid><orcidid>https://orcid.org/0000-0002-1209-7570</orcidid></search><sort><creationdate>20230901</creationdate><title>Modeling Plasmonic Antennas for the Millimeterwave & THz Range</title><author>Ibili, Hande ; Blatter, Tobias ; Baumann, Michael ; Kulmer, Laurenz ; Vukovic, Boris ; Smajic, Jasmin ; Leuthold, Juerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-2eda49198faac96fff6c75cc6551da21d4f2297347e7fb71d0700a332e22d2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>and wireless communications</topic><topic>Antenna design</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Circuit design</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Dipole antennas</topic><topic>Electro-optic devices</topic><topic>equivalent circuit model</topic><topic>Equivalent circuits</topic><topic>field simulations</topic><topic>Figure of merit</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Numerical analysis</topic><topic>Optical modulation</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Terahertz frequencies</topic><topic>THz antennas</topic><topic>THz frequency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibili, Hande</creatorcontrib><creatorcontrib>Blatter, Tobias</creatorcontrib><creatorcontrib>Baumann, Michael</creatorcontrib><creatorcontrib>Kulmer, Laurenz</creatorcontrib><creatorcontrib>Vukovic, Boris</creatorcontrib><creatorcontrib>Smajic, Jasmin</creatorcontrib><creatorcontrib>Leuthold, Juerg</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibili, Hande</au><au>Blatter, Tobias</au><au>Baumann, Michael</au><au>Kulmer, Laurenz</au><au>Vukovic, Boris</au><au>Smajic, Jasmin</au><au>Leuthold, Juerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Plasmonic Antennas for the Millimeterwave & THz Range</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>29</volume><issue>5: Terahertz Photonics</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve the overall understanding of the experimentally found powerful antenna field enhancement (between the impinging field at the antenna and the field within the modulator). This enhancement has already been shown to be as high as 90'000 and allows to efficiently evaluate relevant figures of merit for antenna design and optimization. The effects of antenna design parameters are presented and discussed in detail. The accuracy of the suggested models is verified by rigorous numerical computation through field simulations. As a result, we propose optimized antenna structures and their parameters, and demonstrate their field enhancement capabilities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2023.3314696</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2211-5955</orcidid><orcidid>https://orcid.org/0000-0002-3365-7450</orcidid><orcidid>https://orcid.org/0000-0003-0111-8169</orcidid><orcidid>https://orcid.org/0000-0001-7692-5913</orcidid><orcidid>https://orcid.org/0000-0001-9414-6497</orcidid><orcidid>https://orcid.org/0000-0001-8774-0789</orcidid><orcidid>https://orcid.org/0000-0002-1209-7570</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2023-09, Vol.29 (5: Terahertz Photonics), p.1-15 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_ieee_primary_10247555 |
source | IEEE Electronic Library (IEL) |
subjects | and wireless communications Antenna design Antenna radiation patterns Antennas Circuit design Design optimization Design parameters Dipole antennas Electro-optic devices equivalent circuit model Equivalent circuits field simulations Figure of merit Integrated circuit modeling Mathematical models Modulation Numerical analysis Optical modulation Plasmonics Plasmons Terahertz frequencies THz antennas THz frequency |
title | Modeling Plasmonic Antennas for the Millimeterwave & THz Range |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Plasmonic%20Antennas%20for%20the%20Millimeterwave%20&%20THz%20Range&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Ibili,%20Hande&rft.date=2023-09-01&rft.volume=29&rft.issue=5:%20Terahertz%20Photonics&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2023.3314696&rft_dat=%3Cproquest_ieee_%3E2873590870%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873590870&rft_id=info:pmid/&rft_ieee_id=10247555&rfr_iscdi=true |