Modeling Plasmonic Antennas for the Millimeterwave & THz Range

Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2023-09, Vol.29 (5: Terahertz Photonics), p.1-15
Hauptverfasser: Ibili, Hande, Blatter, Tobias, Baumann, Michael, Kulmer, Laurenz, Vukovic, Boris, Smajic, Jasmin, Leuthold, Juerg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 5: Terahertz Photonics
container_start_page 1
container_title IEEE journal of selected topics in quantum electronics
container_volume 29
creator Ibili, Hande
Blatter, Tobias
Baumann, Michael
Kulmer, Laurenz
Vukovic, Boris
Smajic, Jasmin
Leuthold, Juerg
description Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve the overall understanding of the experimentally found powerful antenna field enhancement (between the impinging field at the antenna and the field within the modulator). This enhancement has already been shown to be as high as 90'000 and allows to efficiently evaluate relevant figures of merit for antenna design and optimization. The effects of antenna design parameters are presented and discussed in detail. The accuracy of the suggested models is verified by rigorous numerical computation through field simulations. As a result, we propose optimized antenna structures and their parameters, and demonstrate their field enhancement capabilities.
doi_str_mv 10.1109/JSTQE.2023.3314696
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10247555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247555</ieee_id><sourcerecordid>2873590870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-2eda49198faac96fff6c75cc6551da21d4f2297347e7fb71d0700a332e22d2cc3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKt_QFwEBHdTb16TmY1QSrVKi68K7kLM3NQp05maTBX99ba2C1fnLs53D3yEnDLoMQb55d3z9HHY48BFTwgm0zzdIx2mVJZIJfn--gatE57C6yE5inEOAJnMoEOuJk2BVVnP6ENl46KpS0f7dYt1bSP1TaDtO9JJWVXlAlsMX_YT6QWdjn7ok61neEwOvK0inuyyS16uh9PBKBnf39wO-uPECQltwrGwMmd55q11eeq9T51WzqVKscJyVkjPea6F1Kj9m2YFaAArBEfOC-6c6JLz7d9laD5WGFszb1ahXk8anmmhcsg0rFt823KhiTGgN8tQLmz4NgzMxpP582Q2nszO0xo620IlIv4DuNRKKfELj-ljXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873590870</pqid></control><display><type>article</type><title>Modeling Plasmonic Antennas for the Millimeterwave &amp; THz Range</title><source>IEEE Electronic Library (IEL)</source><creator>Ibili, Hande ; Blatter, Tobias ; Baumann, Michael ; Kulmer, Laurenz ; Vukovic, Boris ; Smajic, Jasmin ; Leuthold, Juerg</creator><creatorcontrib>Ibili, Hande ; Blatter, Tobias ; Baumann, Michael ; Kulmer, Laurenz ; Vukovic, Boris ; Smajic, Jasmin ; Leuthold, Juerg</creatorcontrib><description>Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve the overall understanding of the experimentally found powerful antenna field enhancement (between the impinging field at the antenna and the field within the modulator). This enhancement has already been shown to be as high as 90'000 and allows to efficiently evaluate relevant figures of merit for antenna design and optimization. The effects of antenna design parameters are presented and discussed in detail. The accuracy of the suggested models is verified by rigorous numerical computation through field simulations. As a result, we propose optimized antenna structures and their parameters, and demonstrate their field enhancement capabilities.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2023.3314696</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>and wireless communications ; Antenna design ; Antenna radiation patterns ; Antennas ; Circuit design ; Design optimization ; Design parameters ; Dipole antennas ; Electro-optic devices ; equivalent circuit model ; Equivalent circuits ; field simulations ; Figure of merit ; Integrated circuit modeling ; Mathematical models ; Modulation ; Numerical analysis ; Optical modulation ; Plasmonics ; Plasmons ; Terahertz frequencies ; THz antennas ; THz frequency</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2023-09, Vol.29 (5: Terahertz Photonics), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-2eda49198faac96fff6c75cc6551da21d4f2297347e7fb71d0700a332e22d2cc3</citedby><cites>FETCH-LOGICAL-c340t-2eda49198faac96fff6c75cc6551da21d4f2297347e7fb71d0700a332e22d2cc3</cites><orcidid>0000-0002-2211-5955 ; 0000-0002-3365-7450 ; 0000-0003-0111-8169 ; 0000-0001-7692-5913 ; 0000-0001-9414-6497 ; 0000-0001-8774-0789 ; 0000-0002-1209-7570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10247555$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Ibili, Hande</creatorcontrib><creatorcontrib>Blatter, Tobias</creatorcontrib><creatorcontrib>Baumann, Michael</creatorcontrib><creatorcontrib>Kulmer, Laurenz</creatorcontrib><creatorcontrib>Vukovic, Boris</creatorcontrib><creatorcontrib>Smajic, Jasmin</creatorcontrib><creatorcontrib>Leuthold, Juerg</creatorcontrib><title>Modeling Plasmonic Antennas for the Millimeterwave &amp; THz Range</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve the overall understanding of the experimentally found powerful antenna field enhancement (between the impinging field at the antenna and the field within the modulator). This enhancement has already been shown to be as high as 90'000 and allows to efficiently evaluate relevant figures of merit for antenna design and optimization. The effects of antenna design parameters are presented and discussed in detail. The accuracy of the suggested models is verified by rigorous numerical computation through field simulations. As a result, we propose optimized antenna structures and their parameters, and demonstrate their field enhancement capabilities.</description><subject>and wireless communications</subject><subject>Antenna design</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Circuit design</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Dipole antennas</subject><subject>Electro-optic devices</subject><subject>equivalent circuit model</subject><subject>Equivalent circuits</subject><subject>field simulations</subject><subject>Figure of merit</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Numerical analysis</subject><subject>Optical modulation</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Terahertz frequencies</subject><subject>THz antennas</subject><subject>THz frequency</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKt_QFwEBHdTb16TmY1QSrVKi68K7kLM3NQp05maTBX99ba2C1fnLs53D3yEnDLoMQb55d3z9HHY48BFTwgm0zzdIx2mVJZIJfn--gatE57C6yE5inEOAJnMoEOuJk2BVVnP6ENl46KpS0f7dYt1bSP1TaDtO9JJWVXlAlsMX_YT6QWdjn7ok61neEwOvK0inuyyS16uh9PBKBnf39wO-uPECQltwrGwMmd55q11eeq9T51WzqVKscJyVkjPea6F1Kj9m2YFaAArBEfOC-6c6JLz7d9laD5WGFszb1ahXk8anmmhcsg0rFt823KhiTGgN8tQLmz4NgzMxpP582Q2nszO0xo620IlIv4DuNRKKfELj-ljXw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Ibili, Hande</creator><creator>Blatter, Tobias</creator><creator>Baumann, Michael</creator><creator>Kulmer, Laurenz</creator><creator>Vukovic, Boris</creator><creator>Smajic, Jasmin</creator><creator>Leuthold, Juerg</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2211-5955</orcidid><orcidid>https://orcid.org/0000-0002-3365-7450</orcidid><orcidid>https://orcid.org/0000-0003-0111-8169</orcidid><orcidid>https://orcid.org/0000-0001-7692-5913</orcidid><orcidid>https://orcid.org/0000-0001-9414-6497</orcidid><orcidid>https://orcid.org/0000-0001-8774-0789</orcidid><orcidid>https://orcid.org/0000-0002-1209-7570</orcidid></search><sort><creationdate>20230901</creationdate><title>Modeling Plasmonic Antennas for the Millimeterwave &amp; THz Range</title><author>Ibili, Hande ; Blatter, Tobias ; Baumann, Michael ; Kulmer, Laurenz ; Vukovic, Boris ; Smajic, Jasmin ; Leuthold, Juerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-2eda49198faac96fff6c75cc6551da21d4f2297347e7fb71d0700a332e22d2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>and wireless communications</topic><topic>Antenna design</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Circuit design</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Dipole antennas</topic><topic>Electro-optic devices</topic><topic>equivalent circuit model</topic><topic>Equivalent circuits</topic><topic>field simulations</topic><topic>Figure of merit</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Numerical analysis</topic><topic>Optical modulation</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Terahertz frequencies</topic><topic>THz antennas</topic><topic>THz frequency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibili, Hande</creatorcontrib><creatorcontrib>Blatter, Tobias</creatorcontrib><creatorcontrib>Baumann, Michael</creatorcontrib><creatorcontrib>Kulmer, Laurenz</creatorcontrib><creatorcontrib>Vukovic, Boris</creatorcontrib><creatorcontrib>Smajic, Jasmin</creatorcontrib><creatorcontrib>Leuthold, Juerg</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibili, Hande</au><au>Blatter, Tobias</au><au>Baumann, Michael</au><au>Kulmer, Laurenz</au><au>Vukovic, Boris</au><au>Smajic, Jasmin</au><au>Leuthold, Juerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Plasmonic Antennas for the Millimeterwave &amp; THz Range</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>29</volume><issue>5: Terahertz Photonics</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Plasmonic modulator antennas have been recently shown to be able to efficiently upmix millimeter and THz waves onto optical frequencies. In this article, we introduce a theory and equivalent circuit models for designing and optimizing plasmonic modulator antennas. The proposed model aims to improve the overall understanding of the experimentally found powerful antenna field enhancement (between the impinging field at the antenna and the field within the modulator). This enhancement has already been shown to be as high as 90'000 and allows to efficiently evaluate relevant figures of merit for antenna design and optimization. The effects of antenna design parameters are presented and discussed in detail. The accuracy of the suggested models is verified by rigorous numerical computation through field simulations. As a result, we propose optimized antenna structures and their parameters, and demonstrate their field enhancement capabilities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2023.3314696</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2211-5955</orcidid><orcidid>https://orcid.org/0000-0002-3365-7450</orcidid><orcidid>https://orcid.org/0000-0003-0111-8169</orcidid><orcidid>https://orcid.org/0000-0001-7692-5913</orcidid><orcidid>https://orcid.org/0000-0001-9414-6497</orcidid><orcidid>https://orcid.org/0000-0001-8774-0789</orcidid><orcidid>https://orcid.org/0000-0002-1209-7570</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2023-09, Vol.29 (5: Terahertz Photonics), p.1-15
issn 1077-260X
1558-4542
language eng
recordid cdi_ieee_primary_10247555
source IEEE Electronic Library (IEL)
subjects and wireless communications
Antenna design
Antenna radiation patterns
Antennas
Circuit design
Design optimization
Design parameters
Dipole antennas
Electro-optic devices
equivalent circuit model
Equivalent circuits
field simulations
Figure of merit
Integrated circuit modeling
Mathematical models
Modulation
Numerical analysis
Optical modulation
Plasmonics
Plasmons
Terahertz frequencies
THz antennas
THz frequency
title Modeling Plasmonic Antennas for the Millimeterwave & THz Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Plasmonic%20Antennas%20for%20the%20Millimeterwave%20&%20THz%20Range&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Ibili,%20Hande&rft.date=2023-09-01&rft.volume=29&rft.issue=5:%20Terahertz%20Photonics&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2023.3314696&rft_dat=%3Cproquest_ieee_%3E2873590870%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873590870&rft_id=info:pmid/&rft_ieee_id=10247555&rfr_iscdi=true