Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method

Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-14
Hauptverfasser: Yang, Huizhang, Yang, Jian, Liu, Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Yang, Huizhang
Yang, Jian
Liu, Zhong
description Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radiolocation in International Telecommunication Union (ITU) radio regulations. In this article, we study the localization model and method of ground-based pulse emitters using SAR as the observation platform. Specifically, we first establish a nonlinear parametric observation model of pulse time of arrival (PTOA) based on SAR observation geometry, where the model parameters include the emitter position in SAR range-azimuth plane. Then, we approximate the PTOA observation model by a second-order polynomial and estimate the azimuth and range positions of the emitter from the polynomial coefficients. Finally, we perform numerical experiments to test the accuracy of the proposed PTOA localization method. The results show that our method can achieve meter-level azimuth accuracy and kilometer-level range accuracy. Moreover, we study the Cramér-Rao lower bound (CRLB) of the emitter location, and by comparison, we show that the root-mean-square error (RMSE) of the proposed method is only about 1.5 times coarser than that of CRLB, demonstrating that our method achieves near-optimal localization accuracy.
doi_str_mv 10.1109/TGRS.2023.3314018
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10247068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247068</ieee_id><sourcerecordid>2872451724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-dfb3240b8134bfbbc91f77fe0ecf9027799cd787527a86e8b789ea039b00f67e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKs_QPAQ8Lw1X7tJvNVSq9Ci9OMcsrsTu6XdrUlWqL_eLe3B01zem2EeQveUDCgl-mk5mS8GjDA-4JwKQtUF6tE0VQnJhLhEPUJ1ljCl2TW6CWFDCBUplT20mjaF3Va_Vf2FJ75p6zJ5sQFK_NluA-DxrooRfMA_lcWLQx3XEKsCD_fgY-sBz21p_TOeNSVssa1LPIO4bspbdOVs59-dZx-tXsfL0Vsy_Zi8j4bTpGBaxKR0OWeC5Ipykbs8LzR1UjogUDhNmJRaF6VUMmXSqgxULpUGS7jOCXGZBN5Hj6e9e998txCi2TStr7uThinJji8y0VH0RBW-CcGDM3tf7aw_GErMsZ451jPHeuZcr3MeTk4FAP94JiTJFP8DsJVrKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872451724</pqid></control><display><type>article</type><title>Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Huizhang ; Yang, Jian ; Liu, Zhong</creator><creatorcontrib>Yang, Huizhang ; Yang, Jian ; Liu, Zhong</creatorcontrib><description>Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radiolocation in International Telecommunication Union (ITU) radio regulations. In this article, we study the localization model and method of ground-based pulse emitters using SAR as the observation platform. Specifically, we first establish a nonlinear parametric observation model of pulse time of arrival (PTOA) based on SAR observation geometry, where the model parameters include the emitter position in SAR range-azimuth plane. Then, we approximate the PTOA observation model by a second-order polynomial and estimate the azimuth and range positions of the emitter from the polynomial coefficients. Finally, we perform numerical experiments to test the accuracy of the proposed PTOA localization method. The results show that our method can achieve meter-level azimuth accuracy and kilometer-level range accuracy. Moreover, we study the Cramér-Rao lower bound (CRLB) of the emitter location, and by comparison, we show that the root-mean-square error (RMSE) of the proposed method is only about 1.5 times coarser than that of CRLB, demonstrating that our method achieves near-optimal localization accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3314018</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Azimuth ; Coefficients ; Cramer-Rao bounds ; Emitters ; Geometry ; Interference ; Localization ; Localization method ; Location awareness ; Lower bounds ; Mathematical models ; Parameter estimation ; passive localization ; Polynomials ; Radar ; Radar equipment ; radio interference ; Root-mean-square errors ; SAR (radar) ; Spaceborne radar ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-dfb3240b8134bfbbc91f77fe0ecf9027799cd787527a86e8b789ea039b00f67e3</citedby><cites>FETCH-LOGICAL-c294t-dfb3240b8134bfbbc91f77fe0ecf9027799cd787527a86e8b789ea039b00f67e3</cites><orcidid>0000-0001-9725-088X ; 0000-0002-0036-9233 ; 0000-0001-9264-0723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10247068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10247068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><title>Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radiolocation in International Telecommunication Union (ITU) radio regulations. In this article, we study the localization model and method of ground-based pulse emitters using SAR as the observation platform. Specifically, we first establish a nonlinear parametric observation model of pulse time of arrival (PTOA) based on SAR observation geometry, where the model parameters include the emitter position in SAR range-azimuth plane. Then, we approximate the PTOA observation model by a second-order polynomial and estimate the azimuth and range positions of the emitter from the polynomial coefficients. Finally, we perform numerical experiments to test the accuracy of the proposed PTOA localization method. The results show that our method can achieve meter-level azimuth accuracy and kilometer-level range accuracy. Moreover, we study the Cramér-Rao lower bound (CRLB) of the emitter location, and by comparison, we show that the root-mean-square error (RMSE) of the proposed method is only about 1.5 times coarser than that of CRLB, demonstrating that our method achieves near-optimal localization accuracy.</description><subject>Accuracy</subject><subject>Azimuth</subject><subject>Coefficients</subject><subject>Cramer-Rao bounds</subject><subject>Emitters</subject><subject>Geometry</subject><subject>Interference</subject><subject>Localization</subject><subject>Localization method</subject><subject>Location awareness</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>passive localization</subject><subject>Polynomials</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>radio interference</subject><subject>Root-mean-square errors</subject><subject>SAR (radar)</subject><subject>Spaceborne radar</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWKs_QPAQ8Lw1X7tJvNVSq9Ci9OMcsrsTu6XdrUlWqL_eLe3B01zem2EeQveUDCgl-mk5mS8GjDA-4JwKQtUF6tE0VQnJhLhEPUJ1ljCl2TW6CWFDCBUplT20mjaF3Va_Vf2FJ75p6zJ5sQFK_NluA-DxrooRfMA_lcWLQx3XEKsCD_fgY-sBz21p_TOeNSVssa1LPIO4bspbdOVs59-dZx-tXsfL0Vsy_Zi8j4bTpGBaxKR0OWeC5Ipykbs8LzR1UjogUDhNmJRaF6VUMmXSqgxULpUGS7jOCXGZBN5Hj6e9e998txCi2TStr7uThinJji8y0VH0RBW-CcGDM3tf7aw_GErMsZ451jPHeuZcr3MeTk4FAP94JiTJFP8DsJVrKg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yang, Huizhang</creator><creator>Yang, Jian</creator><creator>Liu, Zhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-0036-9233</orcidid><orcidid>https://orcid.org/0000-0001-9264-0723</orcidid></search><sort><creationdate>2023</creationdate><title>Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method</title><author>Yang, Huizhang ; Yang, Jian ; Liu, Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-dfb3240b8134bfbbc91f77fe0ecf9027799cd787527a86e8b789ea039b00f67e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Azimuth</topic><topic>Coefficients</topic><topic>Cramer-Rao bounds</topic><topic>Emitters</topic><topic>Geometry</topic><topic>Interference</topic><topic>Localization</topic><topic>Localization method</topic><topic>Location awareness</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>passive localization</topic><topic>Polynomials</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>radio interference</topic><topic>Root-mean-square errors</topic><topic>SAR (radar)</topic><topic>Spaceborne radar</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Huizhang</au><au>Yang, Jian</au><au>Liu, Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radiolocation in International Telecommunication Union (ITU) radio regulations. In this article, we study the localization model and method of ground-based pulse emitters using SAR as the observation platform. Specifically, we first establish a nonlinear parametric observation model of pulse time of arrival (PTOA) based on SAR observation geometry, where the model parameters include the emitter position in SAR range-azimuth plane. Then, we approximate the PTOA observation model by a second-order polynomial and estimate the azimuth and range positions of the emitter from the polynomial coefficients. Finally, we perform numerical experiments to test the accuracy of the proposed PTOA localization method. The results show that our method can achieve meter-level azimuth accuracy and kilometer-level range accuracy. Moreover, we study the Cramér-Rao lower bound (CRLB) of the emitter location, and by comparison, we show that the root-mean-square error (RMSE) of the proposed method is only about 1.5 times coarser than that of CRLB, demonstrating that our method achieves near-optimal localization accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3314018</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-0036-9233</orcidid><orcidid>https://orcid.org/0000-0001-9264-0723</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10247068
source IEEE Electronic Library (IEL)
subjects Accuracy
Azimuth
Coefficients
Cramer-Rao bounds
Emitters
Geometry
Interference
Localization
Localization method
Location awareness
Lower bounds
Mathematical models
Parameter estimation
passive localization
Polynomials
Radar
Radar equipment
radio interference
Root-mean-square errors
SAR (radar)
Spaceborne radar
Synthetic aperture radar
synthetic aperture radar (SAR)
title Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localizing%20Ground-Based%20Pulse%20Emitters%20via%20Synthetic%20Aperture%20Radar:%20Model%20and%20Method&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Huizhang&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3314018&rft_dat=%3Cproquest_RIE%3E2872451724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872451724&rft_id=info:pmid/&rft_ieee_id=10247068&rfr_iscdi=true