Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method
Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Yang, Huizhang Yang, Jian Liu, Zhong |
description | Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radiolocation in International Telecommunication Union (ITU) radio regulations. In this article, we study the localization model and method of ground-based pulse emitters using SAR as the observation platform. Specifically, we first establish a nonlinear parametric observation model of pulse time of arrival (PTOA) based on SAR observation geometry, where the model parameters include the emitter position in SAR range-azimuth plane. Then, we approximate the PTOA observation model by a second-order polynomial and estimate the azimuth and range positions of the emitter from the polynomial coefficients. Finally, we perform numerical experiments to test the accuracy of the proposed PTOA localization method. The results show that our method can achieve meter-level azimuth accuracy and kilometer-level range accuracy. Moreover, we study the Cramér-Rao lower bound (CRLB) of the emitter location, and by comparison, we show that the root-mean-square error (RMSE) of the proposed method is only about 1.5 times coarser than that of CRLB, demonstrating that our method achieves near-optimal localization accuracy. |
doi_str_mv | 10.1109/TGRS.2023.3314018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10247068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247068</ieee_id><sourcerecordid>2872451724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-dfb3240b8134bfbbc91f77fe0ecf9027799cd787527a86e8b789ea039b00f67e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKs_QPAQ8Lw1X7tJvNVSq9Ci9OMcsrsTu6XdrUlWqL_eLe3B01zem2EeQveUDCgl-mk5mS8GjDA-4JwKQtUF6tE0VQnJhLhEPUJ1ljCl2TW6CWFDCBUplT20mjaF3Va_Vf2FJ75p6zJ5sQFK_NluA-DxrooRfMA_lcWLQx3XEKsCD_fgY-sBz21p_TOeNSVssa1LPIO4bspbdOVs59-dZx-tXsfL0Vsy_Zi8j4bTpGBaxKR0OWeC5Ipykbs8LzR1UjogUDhNmJRaF6VUMmXSqgxULpUGS7jOCXGZBN5Hj6e9e998txCi2TStr7uThinJji8y0VH0RBW-CcGDM3tf7aw_GErMsZ451jPHeuZcr3MeTk4FAP94JiTJFP8DsJVrKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872451724</pqid></control><display><type>article</type><title>Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Huizhang ; Yang, Jian ; Liu, Zhong</creator><creatorcontrib>Yang, Huizhang ; Yang, Jian ; Liu, Zhong</creatorcontrib><description>Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radiolocation in International Telecommunication Union (ITU) radio regulations. In this article, we study the localization model and method of ground-based pulse emitters using SAR as the observation platform. Specifically, we first establish a nonlinear parametric observation model of pulse time of arrival (PTOA) based on SAR observation geometry, where the model parameters include the emitter position in SAR range-azimuth plane. Then, we approximate the PTOA observation model by a second-order polynomial and estimate the azimuth and range positions of the emitter from the polynomial coefficients. Finally, we perform numerical experiments to test the accuracy of the proposed PTOA localization method. The results show that our method can achieve meter-level azimuth accuracy and kilometer-level range accuracy. Moreover, we study the Cramér-Rao lower bound (CRLB) of the emitter location, and by comparison, we show that the root-mean-square error (RMSE) of the proposed method is only about 1.5 times coarser than that of CRLB, demonstrating that our method achieves near-optimal localization accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3314018</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Azimuth ; Coefficients ; Cramer-Rao bounds ; Emitters ; Geometry ; Interference ; Localization ; Localization method ; Location awareness ; Lower bounds ; Mathematical models ; Parameter estimation ; passive localization ; Polynomials ; Radar ; Radar equipment ; radio interference ; Root-mean-square errors ; SAR (radar) ; Spaceborne radar ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-dfb3240b8134bfbbc91f77fe0ecf9027799cd787527a86e8b789ea039b00f67e3</citedby><cites>FETCH-LOGICAL-c294t-dfb3240b8134bfbbc91f77fe0ecf9027799cd787527a86e8b789ea039b00f67e3</cites><orcidid>0000-0001-9725-088X ; 0000-0002-0036-9233 ; 0000-0001-9264-0723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10247068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10247068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><title>Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radiolocation in International Telecommunication Union (ITU) radio regulations. In this article, we study the localization model and method of ground-based pulse emitters using SAR as the observation platform. Specifically, we first establish a nonlinear parametric observation model of pulse time of arrival (PTOA) based on SAR observation geometry, where the model parameters include the emitter position in SAR range-azimuth plane. Then, we approximate the PTOA observation model by a second-order polynomial and estimate the azimuth and range positions of the emitter from the polynomial coefficients. Finally, we perform numerical experiments to test the accuracy of the proposed PTOA localization method. The results show that our method can achieve meter-level azimuth accuracy and kilometer-level range accuracy. Moreover, we study the Cramér-Rao lower bound (CRLB) of the emitter location, and by comparison, we show that the root-mean-square error (RMSE) of the proposed method is only about 1.5 times coarser than that of CRLB, demonstrating that our method achieves near-optimal localization accuracy.</description><subject>Accuracy</subject><subject>Azimuth</subject><subject>Coefficients</subject><subject>Cramer-Rao bounds</subject><subject>Emitters</subject><subject>Geometry</subject><subject>Interference</subject><subject>Localization</subject><subject>Localization method</subject><subject>Location awareness</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>passive localization</subject><subject>Polynomials</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>radio interference</subject><subject>Root-mean-square errors</subject><subject>SAR (radar)</subject><subject>Spaceborne radar</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWKs_QPAQ8Lw1X7tJvNVSq9Ci9OMcsrsTu6XdrUlWqL_eLe3B01zem2EeQveUDCgl-mk5mS8GjDA-4JwKQtUF6tE0VQnJhLhEPUJ1ljCl2TW6CWFDCBUplT20mjaF3Va_Vf2FJ75p6zJ5sQFK_NluA-DxrooRfMA_lcWLQx3XEKsCD_fgY-sBz21p_TOeNSVssa1LPIO4bspbdOVs59-dZx-tXsfL0Vsy_Zi8j4bTpGBaxKR0OWeC5Ipykbs8LzR1UjogUDhNmJRaF6VUMmXSqgxULpUGS7jOCXGZBN5Hj6e9e998txCi2TStr7uThinJji8y0VH0RBW-CcGDM3tf7aw_GErMsZ451jPHeuZcr3MeTk4FAP94JiTJFP8DsJVrKg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yang, Huizhang</creator><creator>Yang, Jian</creator><creator>Liu, Zhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-0036-9233</orcidid><orcidid>https://orcid.org/0000-0001-9264-0723</orcidid></search><sort><creationdate>2023</creationdate><title>Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method</title><author>Yang, Huizhang ; Yang, Jian ; Liu, Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-dfb3240b8134bfbbc91f77fe0ecf9027799cd787527a86e8b789ea039b00f67e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Azimuth</topic><topic>Coefficients</topic><topic>Cramer-Rao bounds</topic><topic>Emitters</topic><topic>Geometry</topic><topic>Interference</topic><topic>Localization</topic><topic>Localization method</topic><topic>Location awareness</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>passive localization</topic><topic>Polynomials</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>radio interference</topic><topic>Root-mean-square errors</topic><topic>SAR (radar)</topic><topic>Spaceborne radar</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Huizhang</au><au>Yang, Jian</au><au>Liu, Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Signals from ground-based emitters frequently cause interference to synthetic aperture radar (SAR). A typical class of such interference signals is the transmitted pulses of ground-based radar systems due to the spectrum sharing between the Earth exploration-satellite service (EESS; active) and radiolocation in International Telecommunication Union (ITU) radio regulations. In this article, we study the localization model and method of ground-based pulse emitters using SAR as the observation platform. Specifically, we first establish a nonlinear parametric observation model of pulse time of arrival (PTOA) based on SAR observation geometry, where the model parameters include the emitter position in SAR range-azimuth plane. Then, we approximate the PTOA observation model by a second-order polynomial and estimate the azimuth and range positions of the emitter from the polynomial coefficients. Finally, we perform numerical experiments to test the accuracy of the proposed PTOA localization method. The results show that our method can achieve meter-level azimuth accuracy and kilometer-level range accuracy. Moreover, we study the Cramér-Rao lower bound (CRLB) of the emitter location, and by comparison, we show that the root-mean-square error (RMSE) of the proposed method is only about 1.5 times coarser than that of CRLB, demonstrating that our method achieves near-optimal localization accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3314018</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-0036-9233</orcidid><orcidid>https://orcid.org/0000-0001-9264-0723</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10247068 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Azimuth Coefficients Cramer-Rao bounds Emitters Geometry Interference Localization Localization method Location awareness Lower bounds Mathematical models Parameter estimation passive localization Polynomials Radar Radar equipment radio interference Root-mean-square errors SAR (radar) Spaceborne radar Synthetic aperture radar synthetic aperture radar (SAR) |
title | Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localizing%20Ground-Based%20Pulse%20Emitters%20via%20Synthetic%20Aperture%20Radar:%20Model%20and%20Method&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Huizhang&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3314018&rft_dat=%3Cproquest_RIE%3E2872451724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872451724&rft_id=info:pmid/&rft_ieee_id=10247068&rfr_iscdi=true |